Respiratory System Anatomy and Physiology

Respiratory System Anatomy and Physiology Nursing Study Guide

Breathe life into your understanding with our guide on the respiratory system anatomy and physiology. Nursing students, immerse yourself in the intricate dance of inhalation and exhalation that fuels every living moment.

Table of Contents

Functions of the respiratory system, main bronchi, the respiratory membrane, respiration, mechanics of breathing, respiratory volumes and capacities, respiratory sounds, external respiration, gas transport, and internal respiration, control of respiration, age-related physiological changes in the respiratory system.

The functions of the respiratory system are:

  • Oxygen supplier.  The job of the respiratory system is to keep the body constantly supplied with oxygen.
  • Elimination.  Elimination of carbon dioxide.
  • Gas exchange.  The respiratory system organs oversee the gas exchanges that occur between the blood and the external environment.
  • Passageway.  Passageways that allow air to reach the lungs.
  • Humidifier.  Purify, humidify, and warm incoming air.

Anatomy of the Respiratory System

The organs of the respiratory system include the nose, pharynx, larynx, trachea, bronchi, and their smaller branches, and the lungs, which contain the alveoli.

Respiratory System-Respiratory System Anatomy and Physiology

The nose is the only externally visible part of the respiratory system.

Nose Anatomy-Respiratory System Anatomy and Physiology

  • Nostrils.  During breathing, air enters the nose by passing through the nostrils, or nares.
  • Nasal cavity. The interior of the nose consists of the nasal cavity, divided by a midline nasal septum .
  • Olfactory receptors. The olfactory receptors for the sense of smell are located in the mucosa in the slitlike superior part of the nasal cavity, just beneath the ethmoid bone.
  • Respiratory mucosa. The rest of the mucosal lining, the nasal cavity called the respiratory mucosa, rests on a rich network of thin-walled veins that warms the air as it flows past.
  • Mucus.  In addition, the sticky mucus produced by the mucosa’s glands moistens the air and traps incoming bacteria and other foreign debris, and lysozyme enzymes in the mucus destroy bacteria chemically.
  • Ciliated cells. The ciliated cells of the nasal mucosa create a gentle current that moves the sheet of contaminated mucus posteriorly toward the throat, where it is swallowed and digested by stomach juices.
  • Conchae.  The lateral walls of the nasal cavity are uneven owing to three mucosa-covered projections, or lobes called conchae, which greatly increase the surface area of the mucosa exposed to the air, and also increase the air turbulence in the nasal cavity.
  • Palate. The nasal cavity is separated from the oral cavity below by a partition, the palate; anteriorly, where the palate is supported by bone, is the hard palate; the unsupported posterior part is the soft palate .
  • Paranasal sinuses. The nasal cavity is surrounded by a ring of paranasal sinuses located in the frontal, sphenoid, ethmoid, and maxillary bones ; theses sinuses lighten the skull, and they act as a resonance chamber for speech.

Nose and Pharynx Anatomy-Respiratory System Anatomy and Physiology

  • Size. The pharynx is a muscular passageway about 13 cm (5 inches) long that vaguely resembles a short length of red garden hose.
  • Function.  Commonly called the throat , the pharynx serves as a common passageway for food and air.
  • Portions of the pharynx. Air enters the superior portion, the nasopharynx , from the nasal cavity and then descends through the oropharynx and laryngopharynx to enter the larynx below.
  • Pharyngotympanic tube. The pharyngotympanic tubes, which drain the middle ear open into the nasopharynx.
  • Pharyngeal tonsil. The pharyngeal tonsil, often called adenoid is located high in the nasopharynx.
  • Palatine tonsils . The palatine tonsils are in the oropharynx at the end of the soft palate.
  • Lingual tonsils . The lingual tonsils lie at the base of the tongue.

The larynx or voice box routes air and food into the proper channels and plays a role in speech.

  • Structure.  Located inferior to the pharynx, it is formed by eight rigid hyaline cartilages and a spoon-shaped flap of elastic cartilage, the epiglottis .
  • Thyroid cartilage. The largest of the hyaline cartilages is the shield-shaped thyroid cartilage, which protrudes anteriorly and is commonly called Adam’s apple .
  • Epiglottis.  Sometimes referred to as the “guardian of the airways” , the epiglottis protects the superior opening of the larynx.
  • Vocal folds. Part of the mucous membrane of the larynx forms a pair of folds, called the vocal folds, or true vocal cords , which vibrate with expelled air and allows us to speak.
  • Glottis.  The slitlike passageway between the vocal folds is the glottis.

Trachea Anatomy-Respiratory System Anatomy and Physiology

  • Length.  Air entering the trachea or windpipe from the larynx travels down its length (10 to 12 cm or about 4 inches) to the level of the fifth thoracic vertebra , which is approximately midchest.
  • Structure.  The trachea is fairly rigid because its walls are reinforced with C-shaped rings of hyaline cartilage; the open parts of the rings abut the esophagus and allow it to expand anteriorly when we swallow a large piece of food, while the solid portions support the trachea walls and keep it patent, or open, in spite of the pressure changes that occur during breathing.
  • Cilia.  The trachea is lined with ciliated mucosa that beat continuously and in a direction opposite to that of the incoming air as they propel mucus, loaded with dust particles and other debris away from the lungs to the throat, where it can be swallowed or spat out.
  • Structure.  The right and left main (primary) bronchi are formed by the division of the trachea.
  • Location.  Each main bronchus runs obliquely before it plunges into the medial depression of the lung on its own side.
  • Size.  The right main bronchus is wider, shorter, and straighter than the left.

Anatomy of the Lungs-Respiratory System Anatomy and Physiology

  • Location.  The lungs occupy the entire thoracic cavity except for the most central area, the mediastinum , which houses the heart, the great blood vessels, bronchi, esophagus, and other organs.
  • Apex.  The narrow, superior portion of each lung, the apex, is just deep into the clavicle.
  • Base.  The broad lung area resting on the diaphragm is the base.
  • Division.  Each lung is divided into lobes by fissures; the left lung has two lobes , and the right lung has three .
  • Pleura.  The surface of each lung is covered with a visceral serosa called the pulmonary , or visceral pleura, and the walls of the thoracic cavity are lined by the parietal pleura .
  • Pleural fluid. The pleural membranes produce pleural fluid, a slippery serous secretion that allows the lungs to glide easily over the thorax wall during breathing movements and causes the two pleural layers to cling together.
  • Pleural space. The lungs are held tightly to the thorax wall, and the pleural space is more of a potential space than an actual one.
  • Bronchioles .  The smallest of the conducting passageways are the bronchioles.
  • Alveoli.  The terminal bronchioles lead to the respiratory zone structures, even smaller conduits that eventually terminate in alveoli or air sacs.
  • Respiratory zone. The respiratory zone, which includes the respiratory bronchioles, alveolar ducts, alveolar sacs, and alveoli, is the only site of gas exchange .
  • Conducting zone structures. All other respiratory passages are conducting zone structures that serve as conduits to and from the respiratory zone.
  • Stroma.  The balance of the lung tissue, its stroma, is mainly elastic connective tissue that allows the lungs to recoil passively as we exhale.
  • Wall structure. The walls of the alveoli are composed largely of a single, thin layer of squamous epithelial cells.
  • Alveolar pores. Alveolar pores connect neighboring air sacs and provide alternative routes for air to reach alveoli whose feeder bronchioles have been clogged by mucus or otherwise blocked.
  • Respiratory membrane. Together, the alveolar and capillary walls, their fused basement membranes, and occasional elastic fibers construct the respiratory membrane (air-blood barrier), which has gas (air) flowing past on one side and blood flowing past on the other.
  • Alveolar macrophages. Remarkably efficient alveolar macrophages sometimes called “dust cells” , wander in and out of the alveoli picking up bacteria, carbon particles, and other debris.
  • Cuboidal cells. Also scattered amid the epithelial cells that form most of the alveolar walls are chunky cuboidal cells, which produce a lipid (fat) molecule called surfactant , which coats the gas-exposed alveolar surfaces and is very important in lung function.

Physiology of the Respiratory System

The major function of the respiratory system is to supply the body with oxygen and to dispose of carbon dioxide. To do this, at least four distinct events, collectively called respiration, must occur.

  • Pulmonary ventilation . Air must move into and out of the lungs so that gasses in the air sacs are continuously refreshed, and this process is commonly called breathing.
  • External respiration. Gas exchange between the pulmonary blood and alveoli must take place.
  • Respiratory gas transport. Oxygen and carbon dioxide must be transported to and from the lungs and tissue cells of the body via the bloodstream.
  • Internal respiration. At systemic capillaries, gas exchanges must be made between the blood and tissue cells.
  • Rule.  Volume changes lead to pressure changes, which lead to the flow of gasses to equalize pressure.
  • Inspiration.  Air is flowing into the lungs; the chest is expanded laterally, the rib cage is elevated, and the diaphragm is depressed and flattened; lungs are stretched to the larger thoracic volume, causing the intrapulmonary pressure to fall and air to flow into the lungs.
  • Expiration.  Air is leaving the lungs; the chest is depressed and the lateral dimension is reduced, the rib cage is descended, and the diaphragm is elevated and dome-shaped; lungs recoil to a smaller volume, intrapulmonary pressure rises, and air flows out of the lung.
  • Intrapulmonary volume. Intrapulmonary volume is the volume within the lungs.
  • Intrapleural pressure. The normal pressure within the pleural space, the intrapleural pressure, is always negative, and this is the major factor preventing the collapse of the lungs.
  • Nonrespiratory air movements. Nonrespiratory movements are a result of reflex activity, but some may be produced voluntarily such as coughing , sneezing, crying, laughing, hiccups, and yawning.

Respiratory Volumes and Capacities-Respiratory System Anatomy and Physiology

  • Tidal volume. Normal quiet breathing moves approximately 500 ml of air into and out of the lungs with each breath.
  • Inspiratory reserve volume. The amount of air that can be taken in forcibly over the tidal volume is the inspiratory reserve volume, which is normally between 2100 ml to 3200 ml.
  • Expiratory reserve volume. The amount of air that can be forcibly exhaled after a tidal expiration, the expiratory reserve volume, is approximately 1200 ml.
  • Residual volume. Even after the most strenuous expiration, about 1200 ml of air still remains in the lungs and it cannot be voluntarily expelled; this is called residual volume, and it is important because it allows gas exchange to go on continuously even between breaths and helps to keep the alveoli inflated.
  • Vital capacity. The total amount of exchangeable air is typically around 4800 ml in healthy young men, and this respiratory capacity is the vital capacity, which is the sum of the tidal volume, inspiratory reserve volume, and expiratory reserve volume.
  • Dead space volume. Much of the air that enters the respiratory tract remains in the conducting zone passageways and never reaches the alveoli; this is called the dead space volume and during a normal tidal breath, it amounts to about 150 ml.
  • Functional volume. The functional volume, which is the air that actually reaches the respiratory zone and contributes to gas exchange, is about 350 ml.
  • Spirometer.  Respiratory capacities are measured with a spirometer, wherein as a person breathes, the volumes of air exhaled can be read on an indicator, which shows the changes in air volume inside the apparatus.
  • Bronchial sounds. Bronchial sounds are produced by air rushing through the large respiratory passageways (trachea and bronchi).
  • Vesicular breathing sounds. Vesicular breathing sounds occur as air fills the alveoli, and they are soft and resemble a muffled breeze.
  • External respiration. External respiration or pulmonary gas exchange involves oxygen being loaded and carbon dioxide being unloaded from the blood.
  • Internal respiration. In internal respiration or systemic capillary gas exchange, oxygen is unloaded and carbon dioxide is loaded into the blood.
  • Gas transport. Oxygen is transported in the blood in two ways: most attaches to hemoglobin molecules inside the RBCs to form oxyhemoglobin, or a very small amount of oxygen is carried dissolved in the plasma; while carbon dioxide is transported in plasma as bicarbonate ion, or a smaller amount (between 20 to 30 percent of the transported carbon dioxide) is carried inside the RBCs bound to hemoglobin.

Neural Regulation

  • Phrenic and intercostal nerves. These two nerves regulate the activity of the respiratory muscles, the diaphragm, and external intercostals.
  • Medulla and pons. Neural centers that control respiratory rhythm and depth are located mainly in the medulla and pons; the medulla, which sets the basic rhythm of breathing, contains a pacemaker , or self-exciting inspiratory center, and an expiratory center that inhibits the pacemaker in a rhythmic way; pons centers appear to smooth out the basic rhythm of inspiration and expiration set by the medulla.
  • Eupnea.  The normal respiratory rate is referred to as eupnea, and it is maintained at a rate of 12 to 15 respirations/minute .
  • Hyperpnea.  During exercise, we breathe more vigorously and deeply because the brain centers send more impulses to the respiratory muscles, and this respiratory pattern is called hyperpnea.

Non-neural Factors Influencing Respiratory Rate and Depth

  • Physical factors. Although the medulla’s respiratory centers set the basic rhythm of breathing, there is no question that physical factors such as talking, coughing, and exercising can modify both the rate and depth of breathing, as well as an increased body temperature, which increases the rate of breathing.
  • Volition (conscious control). Voluntary control of breathing is limited, and the respiratory centers will simply ignore messages from the cortex (our wishes) when the oxygen supply in the blood is getting low or blood pH is falling .
  • Emotional factors. Emotional factors also modify the rate and depth of breathing through reflexes initiated by emotional stimuli acting through centers in the hypothalamus .
  • Chemical factors. The most important factors that modify respiratory rate and depth are chemical- the levels of carbon dioxide and oxygen in the blood; increased levels of carbon dioxide and decreased blood pH are the most important stimuli leading to an increase in the rate and depth of breathing, while a decrease in oxygen levels become important stimuli when the levels are dangerously low.
  • Hyperventilation.  Hyperventilation blows off more carbon dioxide and decreases the amount of carbonic acid, which returns blood pH to the normal range when carbon dioxide or other sources of acids begin to accumulate in the blood.
  • Hypoventilation.  Hypoventilation or extremely slow or shallow breathing allows carbon dioxide to accumulate in the blood and brings blood pH back into normal range when blood starts to become slightly alkaline.

Respiratory efficiency is reduced with age. They are unable to compensate for increased oxygen need and are significantly increasing the amount of air inspired. Therefore, difficulty in breathing is usually common especially during activities.  Expiratory muscles become weaker so their cough efficiency is reduced and the amount of air left in the lungs is increased. Health promotion teaching can include smoking cessation, preventing respiratory infections through handwashing , and ensuring up to date influenza and pneumonia vaccinations.

Craving more insights? Dive into these related materials to enhance your study journey!

  • Anatomy and Physiology Nursing Test Banks . This nursing test bank includes questions about Anatomy and Physiology and its related concepts such as: structure and functions of the human body, nursing care management of patients with conditions related to the different body systems.

10 thoughts on “Respiratory System Anatomy and Physiology”

Hello, My name is Sharon and I think I just struck gold! This web site is just what I need to study, learn, and understand the Human Body. Thank you so much.

Thank you so much. you just made my day. The information was comprehensive and comes as an easy resource. Violet.

Thanks very much, I was satisfied with the answers

Thanks very much. I am satisfied with the notes

Thank you so much the notes are perfect and useful to my studies

Very helpful and easy to understand. Thank you so much.

It is fantastic and very helpfull and thanks a lot

This is very helpful, thank you.

You’re welcome! Happy to hear that you found the respiratory system anatomy and physiology material helpful. If there’s anything more you’d like to dive into or any questions you have, feel free to reach out. Always here to help with your learning journey.

Thank you so much

Leave a Comment Cancel reply

  • Biology Article

Human Respiratory System

Respiratory system of humans.

Breathing involves gaseous exchange through inhalation and exhalation. The human respiratory system has the following main structures – Nose, mouth, pharynx, larynx, trachea, bronchi, and lungs. Explore in detail.

Table of Contents

  • What Is Respiratory System

Respiratory Tract

Respiratory system definition.

“Human Respiratory System is a network of organs and tissues that helps us breathe. The primary function of this system is to introduce oxygen into the body and expel carbon dioxide from the body.”

What is the Respiratory System?

As defined above, the human respiratory system consists of a group of organs and tissues that help us to breathe. Aside from the lungs, there are also muscles and a vast network of blood vessels that facilitate the process of respiration.

Also Read:  Mechanism of Breathing

Human Respiratory System Diagram

To gain a clearer understanding, we have illustrated the human respiratory system and its different parts involved in the process.

Human Respiratory System

Human Respiratory System Diagram showing different parts of the Respiratory Tract

Features of the Human Respiratory System

The respiratory system in humans has the following important features:

  • The energy is generated by the breakdown of glucose molecules in all living cells of the human body.
  • Oxygen is inhaled and is transported to various parts and are used in the process of burning food particles (breaking down glucose molecules) at the cellular level in a series of chemical reactions.
  • The obtained glucose molecules are used for discharging energy in the form of ATP- (adenosine triphosphate)

Also Read:  Difference between trachea and oesophagus

assignment for respiratory system

Respiratory System Parts and Functions

Let us have a detailed look at the different parts of the respiratory system and their functions.

Humans have exterior nostrils, which are divided by a framework of cartilaginous structure called the septum. This is the structure that separates the right nostril from the left nostril. Tiny hair follicles that cover the interior lining of nostrils act as the body’s first line of defence against foreign pathogens . Furthermore, they provide additional humidity for inhaled air.

Two cartilaginous chords lay the framework for the larynx. It is found in front of the neck and is responsible for vocals as well as aiding respiration. Hence, it is also informally called the voice box. When food is swallowed, a flap called the epiglottis folds over the top of the windpipe and prevents food from entering into the larynx.

Also check: What is the role of epiglottis and diaphragm in respiration?

The nasal chambers open up into a wide hollow space called the pharynx. It is a common passage for air as well as food. It functions by preventing the entry of food particles into the windpipe. The epiglottis is an elastic cartilage, which serves as a switch between the larynx and the oesophagus by allowing the passage of air into the lungs, and food in the  gastrointestinal tract .

Have you ever wondered why we cough when we eat or swallow?

Talking while we eat or swallow may sometimes result in incessant coughing. The reason behind this reaction is the epiglottis. It is forced to open for the air to exit outwards and the food to enter into the windpipe, triggering a cough.

The trachea or the windpipe rises below the larynx and moves down to the neck. The walls of the trachea comprise C-shaped cartilaginous rings which give hardness to the trachea and maintain it by completely expanding. The trachea extends further down into the breastbone and splits into two bronchi, one for each lung.

The trachea splits into two tubes called the bronchi, which enter each lung individually. The bronchi divide into secondary and tertiary bronchioles, and it further branches out into small air-sacs called the alveoli. The alveoli are single-celled sacs of air with thin walls. It facilitates the exchange of oxygen and carbon dioxide molecules into or away from the bloodstream.

Lungs are the primary organs of respiration in humans and other vertebrates. They are located on either side of the heart, in the thoracic cavity of the chest. Anatomically, the lungs are spongy organs with an estimates total surface area between 50 to 75 sq meters. The primary function of the lungs is to facilitate the exchange of gases between the blood and the air. Interestingly, the right lung is quite bigger and heavier than the left lung.

Also Read:  Respiration

The respiratory tract in humans is made up of the following parts:

  • External nostrils – For the intake of air.
  • Nasal chamber – which is lined with hair and mucus to filter the air from dust and dirt.
  • Pharynx – It is a passage behind the nasal chamber and serves as the common passageway for both air and food.
  • Larynx – Known as the soundbox as it houses the vocal chords, which are paramount in the generation of sound.
  • Epiglottis – It is a flap-like structure that covers the glottis and prevents the entry of food into the windpipe.
  • Trachea – It is a long tube passing through the mid-thoracic cavity.
  • Bronchi – The trachea divides into left and right bronchi.
  • Bronchioles – Each bronchus is further divided into finer channels known as bronchioles.
  • Alveoli – The bronchioles terminate in balloon-like structures known as the alveoli.
  • Lungs – Humans have a pair of lungs, which are sac-like structures and covered by a double-layered membrane known as pleura.

Air is inhaled with the help of nostrils, and in the nasal cavity, the air is cleansed by the fine hair follicles present within them. The cavity also has a group of blood vessels that warm the air. This air then passes to the pharynx, then to the larynx and into the trachea.

The trachea and the bronchi are coated with ciliated epithelial cells and goblet cells (secretory cells) which discharge mucus to moisten the air as it passes through the respiratory tract. It also traps the fine bits of dust or pathogen that escaped the hair in the nasal openings. The motile cilia beat in an ascending motion, such that the mucus and other foreign particles are carried back to the buccal cavity where it may either be coughed out (or swallowed.)

Once the air reaches the bronchus, it moves into the bronchioles, and then into the alveoli.

Respiratory System Functions

The functions of the human respiratory system are as follows:

Inhalation and Exhalation

The respiratory system helps in breathing (also known as pulmonary ventilation.) The air inhaled through the nose moves through the pharynx, larynx, trachea and into the lungs. The air is exhaled back through the same pathway. Changes in the volume and pressure in the lungs aid in pulmonary ventilation.

Exchange of Gases between Lungs and Bloodstream

Inside the lungs, the oxygen and carbon dioxide enter and exit respectively through millions of microscopic sacs called alveoli. The inhaled oxygen diffuses into the pulmonary capillaries, binds to haemoglobin and is pumped through the bloodstream. The carbon dioxide from the blood diffuses into the alveoli and is expelled through exhalation.

Also read: Exchange Of Gases in Plants

Exchange of Gases between Bloodstream and Body Tissues

The blood carries the oxygen from the lungs around the body and releases the oxygen when it reaches the capillaries. The oxygen is diffused through the capillary walls into the body tissues. The carbon dioxide also diffuses into the blood and is carried back to the lungs for release.

The Vibration of the Vocal Cords

While speaking, the muscles in the larynx move the arytenoid cartilage. These cartilages push the vocal cords together. During exhalation, when the air passes through the vocal cords, it makes them vibrate and creates sound.

Olfaction or Smelling

During inhalation, when the air enters the nasal cavities, some chemicals present in the air bind to it and activate the receptors of the nervous system on the cilia. The signals are sent to the olfactory bulbs via the brain.

Also Read:  Respiratory System Disorders

Respiration is one of the metabolic processes which plays an essential role in all living organisms. However, lower organisms like the unicellular do not “breathe” like humans – intead, they utilise the process of diffusion. Annelids like earthworms have a moist cuticle which helps them in gaseous exchange. Respiration in fish occurs through special organs called gills. Most of the higher organisms possess a pair of lungs for breathing.

Also Read:  Amphibolic Pathway

To learn more about respiration, check out the video below:

assignment for respiratory system

Frequently Asked Questions

What is the human respiratory system.

The human respiratory system is a system of organs responsible for inhaling oxygen and exhaling carbon dioxide in humans. The important respiratory organs in living beings include- lungs, gills, trachea, and skin.

What are the important respiratory system parts in humans?

The important human respiratory system parts include- Nose, larynx, pharynx, trachea, bronchi and lungs.

What is the respiratory tract made up of?

The respiratory tract is made up of nostrils, nasal chamber, larynx, pharynx, epiglottis, trachea, bronchioles, bronchi, alveoli, and lungs.

What are the main functions of the respiratory system?

The important functions of the respiratory system include- inhalation and exhalation of gases, exchange of gases between bloodstream and lungs, the gaseous exchange between bloodstream and body tissues, olfaction and vibration of vocal cords.

What are the different types of respiration in humans?

The different types of respiration in humans include- internal respiration, external respiration and cellular respiration. Internal respiration includes the exchange of gases between blood and cells, external respiration is the breathing process, whereas cellular respiration is the metabolic reactions taking place in the cells to produce energy.

What are the different stages of aerobic respiration?

Aerobic respiration is the process of breaking down glucose to produce energy. It occurs in the following different stages- glycolysis, pyruvate oxidation, citric acid cycle or Krebs cycle, and electron transport system.

Why do the cells need oxygen?

Our body cells require oxygen to release energy. The oxygen inhaled during respiration is used to break down the food to release energy.

What is the main difference between breathing and respiration in humans?

Breathing is the physical process of inhaling oxygen and exhaling carbon dioxide in and out of our lungs. On the contrary, respiration is the chemical process where oxygen is utilized to break down glucose to generate energy to carry out different cellular processes.

Explore more details about the human respiratory system or other related topics by registering at  BYJU’S Biology

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

assignment for respiratory system

Wow!!!!! Great notes . Thankyou byjus

Wow! this is really helpful. Thank you

Greet notes

Very helpful

Very nice information

good answers!

Thank you so much for the notes

Great notes helpful for students

The notes are really amazing. It helped me a lot. Thank you BYJU’S

The notes are amazing. It helped me a lot. Thank you Byju’s.

Thank you for the notes helpful in the revision

Very good notes. I love Byjus learning application

thank you byjus

These notes are very good for study, thank u so much Byjus.

Helpful for studying. Informative about the topic. Great notes!

Great job you are great Byjus and your notes is superb ❤❤❤❤❣❣❣❣❣🙏🙏🙏🙏

assignment for respiratory system

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

High school biology

Course: high school biology   >   unit 8.

  • Meet the heart!
  • Circulatory system and the heart
  • The circulatory system review
  • Meet the lungs
  • The lungs and pulmonary system

The respiratory system review

  • The circulatory and respiratory systems

The respiratory system

Common mistakes and misconceptions.

  • Physiological respiration and cellular respiration are not the same. People sometimes use the word "respiration" to refer to the process of cellular respiration, which is a cellular process in which carbohydrates are converted into energy. The two are related processes, but they are not the same.
  • We do not breathe in only oxygen or breathe out only carbon dioxide. Often the terms "oxygen" and "air" are used interchangeably. It is true that the air we breathe in has more oxygen than the air we breathe out, and the air we breathe out has more carbon dioxide than the air that we breathe in. However, oxygen is just one of the gases found in the air we breathe. (In fact, the air has more nitrogen than oxygen!)
  • The respiratory system does not work alone in transporting oxygen through the body. The respiratory system works directly with the circulatory system to provide oxygen to the body. Oxygen taken in from the respiratory system moves into blood vessels that then circulate oxygen-rich blood to tissues and cells.

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Good Answer

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Medicine LibreTexts

6.1: Lab 6: Respiratory System

  • Last updated
  • Save as PDF
  • Page ID 13108

Measurable Outcomes

  • Understand and identify the anatomical structures of the respiratory system on available models.
  • Deduce the pathway of air through the respiratory system.
  • Determine the pathway of pulmonary circulation.
  • Identify the various muscles involved in respiration.
  • Recognize the hallmarks of lung histology.
  • Demonstrate an adequate understand of the material in this section.

The respiratory system is responsible for the gas exchange of oxygen and carbon dioxide. The main specialized organs of this process are the lungs which house clusters of sac-like structures known as alveoli . There are from 480 to 790 million alveoli which increase the efficiency of gas exchange by increasing surface area to around 118m 2 in men and 91m 2 in women. The respiratory system consists of the nasal cavity, pharynx, larynx, trachea, lungs, bronchi, bronchioles , and alveoli , along with their accessory structures. These structures are divided into the upper and lower respiratory systems , with the lower portion beginning at the larynx. The primary function of this system is to exchange oxygen and carbon dioxide between the body and the environment. Functionally, the respiratory system can be divided into the conducting zone , terminating at the terminal bronchioles; then air flows into the respiratory zone, where the actual gas exchange occurs.

Though we view each system individually in this lab, it is important to keep in mind that all organ systems overlap and work together in such a way that scientist are constantly discovering new connections. One such example is the nose . Not only is it the primary entrance and exit for respiration, but it also contains the olfactory epithelium, the primary structure of one of the special senses, olfaction. Likewise, the pharynx is a structure shared by both the respiratory and digestion systems.

Although both lungs functionally participate in respiration, they differ physically in various ways. The right lung is shorter and wider than the left lung, and the left lung occupies a smaller volume than the right. Another distinction between the two lungs is that the left lung contains the cardiac notch , which makes space for the heart. Furthermore, whereas the right lung has three lobes, the left lung has only two.

Though not visible on every model, each lung is surrounded by the pleura, which consists of two layers called the visceral and parietal pleurae. They are important because they lubricate the lungs and reduce friction during inhalation and exhalation.

Vocabulary for Respiratory System can be found on page(s) 169 .

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

19.4: Laboratory Activities and Assignment

  • Last updated
  • Save as PDF
  • Page ID 53810

  • Rosanna Hartline
  • West Hills College Lemoore

Laboratory Activities and Assignment

Part 1: review of the respiratory system.

1. Put the following structures in order as indicated by each part a. and b. below:

a. Put the structures in order air passes through from entry into the respiratory system to the point of gas exchange with the blood (this order follows the path of O 2 into the body):

b. Put the structures in order air passes through from gas exchange with the blood to its exit from the respiratory system (this order follows the path of CO 2 out of the body):

2. Label the diagram below with the following structures:

Diagram of respiratory anatomy for labeling

2. Label the diagram of the respiratory mucosa lining much of the large airways of the respiratory tract with the structures listed below.

Tissue diagram for labeling

3. Below is a microscopic image of lung tissue magnified by 100x. Label the following structures:

Microscopic image of lung tissue for labeling

4. Below is a diagram of alveolar structures with a tissue section showing some of those alveolar structures. Label the following on both the figure and the microscopic tissue section where possible.

Part 2: Examining the Histology of the Respiratory System

  • Obtain the slides listed below that are available for today’s lab.
  • Focus on each sample and identify the structures listed for each type of tissue.
  • Indicate the total magnification you make each illustration at in the space provided.
  • Illustrate each tissue you observe with the microscope at the magnification you listed.
  • Label each illustration with the structures listed for each.

Trachea Cross Section

Illustrations at more than one magnification will be required.

Label the tissue with: trachea, esophagus, cartilage ring, opening in cartilage ring, lumen, pseudostratified ciliated columnar epithelium, goblet cells, cilia, basement membrane, lamina propria, elastic lamina, mixed glands, hyaline cartilage

Lung Tissue

More than one illustration will required with more than one magnification.

Label the tissue with: secondary bronchi, cartilage plates, pulmonary blood vessels, bronchioles, terminal bronchiole, respiratory bronchiole, alveolar ducts, alveoli, type I alveolar cells, interalveolar septum, endothelium, pulmonary capillary, connective tissue, alveolar lumen

Part 3: Mechanism of Breathing (Balloon-and-Bell Jar Model)

  • Balloon-and-bell jar

Instructions & Questions

  • Pull down the rubber sheet. What happens to the balloons? ___ .
  • This represents the downward movement of the human __ , which causes the chest cavity to become _______ (larger/smaller). This, in turn, causes the human _ _____ to expand and fill with air.
  • Release the rubber sheet. What happens to the balloons?______________.
  • This represents relaxed __________ (inhaling/exhaling), when the chest cavity becomes smaller and the lungs deflate. Note that this is a passive process.
  • What organs do the balloons represent? __________________
  • What does the rubber sheet you pulled on represent? ____________________

Attributions

  • "Digital Histology" by Department of Anatomy and Neurobiology and the Office of Faculty Affairs , Virginia Commonwealth University School of Medicine and the ALT Lab at Virginia Commonwealth University is licensed under CC BY 4.0
  • "Respiratory system complete no labels.svg" by Bibi Saint-Pol, Jmarch is licensed under CC BY-SA 3.0
  • "BIOL 250 Human Anatomy Lab Manual SU 19" by Yancy Aquino , Skyline College is licensed under CC BY-NC-SA 4.0
  • "Principles of Biology II Lab Manual (BIOL 1108) " by Dalton State is licensed under CC BY-SA 4.0
  • Assignment 1 - the Digestive System
  • Assignment 2 - the Cardiovascular System
  • Assignment 3 - the Respiratory System
  • Assignment 4 - the Lymphatic System

The Respiratory System "A biological system   consisting of specific organs and structures used for the process of respiration in an organism. The respiratory system is involved in the intake and exchange of oxygen and carbon dioxide between an organism and the environment."

Practical investigation into the effects of exercise on the respiratory system.

Picture

The Lower Respiratory System

Picture

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Respiratory System

Learning objectives.

  • Identify the anatomy of the respiratory System
  • Describe the main functions of the respiratory System
  • Spell the respiratory system medical terms and use correct abbreviations
  • Identify the medical specialties associated with the respiratory system
  • Explore common diseases, disorders, and procedures related to the respiratory system

Respiratory System Word Parts

Click on prefixes, combining forms, and suffixes to reveal a list of word parts to memorize for the Respiratory System.

Introduction to the Respiratory System

Did you know.

How long you can hold your breath as you continue reading… How long can you do it? Chances are you are feeling uncomfortable already. A typical human cannot survive without breathing for more than three minutes, and even if you wanted to hold your breath longer, your autonomic nervous system would take control. Although oxygen is critical for cells, it is the accumulation of carbon dioxide that primarily drives your need to breathe.

The major structures of the respiratory system function primarily to provide oxygen to body tissues for cellular respiration, remove the waste product carbon dioxide, and help to maintain acid-base balance. Portions of the respiratory system are also used for non-vital functions, such as sensing odors, speech production, and for straining, such as coughing.

Major respiratory structures. Image description available.

Watch this video:

Media 7.1. Respiratory System, Part 1: Crash Course A&P #31 [Online video]. Copyright 2015 by CrashCourse .

Respiratory System Medical Terms

Anatomy (structures) of the respiratory system, the nose and its adjacent structures.

The major entrance and exit for the respiratory system is through the nose . When discussing the nose, it is helpful to divide it into two major sections:

  •   external nose
  •   internal nose

The nares open into the nasal cavity, which is separated into left and right sections by the nasal septum ( Figure 7.2 ). The nasal septum is formed anteriorly by a portion of the septal cartilage   and posteriorly by the perpendicular plate of the ethmoid bone and the thin vomer bones.

Each lateral wall of the nasal cavity has three bony projections t he inferior conchae are separate bones and t he superior and middle conchae are portions of the ethmoid bone. Conchae increase the surface area of the nasal cavity, disrupt the flow of air as it enters the nose, causing air to bounce along the epithelium, where it is cleaned and warmed. The conchae and meatuses  trap water during exhalation preventing dehydration.

The floor of the nasal cavity is composed of the hard palate and the soft palate . Air exits the nasal cavities via the internal nares and moves into the pharynx.

Diagram of the upper airway. Image description available.

Paranasal sinuses , serve to warm and humidify incoming air and are lined with a mucosa which produces mucus. Paranasal sinuses are named for their associated bone:

  • frontal sinus
  • maxillary sinus
  • sphenoidal sinus
  • ethmoidal sinus

The nares and anterior portion of the nasal cavities are lined with mucous membranes, containing sebaceous glands and hair follicles that serve to prevent the passage of large debris, such as dirt, through the nasal cavity. An olfactory epithelium used to detect odors is found deeper in the nasal cavity.

The conchae, meatuses, and paranasal sinuses are lined by respiratory epithelium composed of pseudostratified ciliated columnar epithelium ( Figure 7.3 ). The epithelium contains specialized epithelial cells that produce mucus to trap debris. The cilia of the respiratory epithelium help to remove mucus and debris with a constant beating motion, sweeping materials towards the throat to be swallowed.

This moist epithelium functions to warm and humidify incoming air. Capillaries located just beneath the nasal epithelium warm the air by convection. Serous and mucus-producing cells also secrete defensins , immune cells patrol the connective tissue providing additional protection.

Pseudostratified Ciliated Columnar Epithelium. Image description available.

The pharynx is divided into three major regions: the nasopharynx , the oropharynx , and the laryngopharynx (see Figure 7.4 ).

Divisions of the pharynx. Image description available.

At the top of the nasopharynx are the pharyngeal tonsils. The function of the pharyngeal tonsil is not well understood, but it contains a rich supply of lymphocytes and is covered with ciliated epithelium that traps and destroys invading pathogens that enter during inhalation. The pharyngeal tonsils are large in children, but tend to regress with age and may even disappear. The uvula and soft palate move like a pendulum during swallowing, swinging upward to close off the nasopharynx to prevent ingested materials from entering the nasal cavity. Auditory (Eustachian) tubes that connect to each middle ear cavity open into the nasopharynx. This connection is why colds often lead to ear infections.

The oropharynx is bordered superiorly by the nasopharynx and anteriorly by the oral cavity.  The oropharynx contains two distinct sets of tonsils:

  • A palatine tonsil is one of a pair of structures located laterally in the oropharynx in the area of the fauces .
  • The lingual tonsil is located at the base of the tongue.

Similar to the pharyngeal tonsil, the palatine and lingual tonsils are composed of lymphoid tissue, and trap and destroy pathogens entering the body through the oral or nasal cavities.

The laryngopharynx is inferior to the oropharynx and posterior to the larynx. It continues the route for ingested material and air until its inferior end, where the digestive and respiratory systems diverge. The stratified squamous epithelium of the oropharynx is continuous with the laryngopharynx. Anteriorly , the laryngopharynx opens into the larynx, whereas posteriorly , it enters the esophagus.

The structure of the larynx is formed by several pieces of cartilage. Three large cartilage pieces form the major structure of the larynx .

  • The thyroid cartilage is the largest piece of cartilage that makes up the larynx. The thyroid cartilage consists of the laryngeal prominence, or “Adam’s apple,” which tends to be more prominent in males.
  • Three smaller, paired cartilages—the arytenoids, corniculates, and cuneiforms—attach to the epiglottis and the vocal cords and muscle that help move the vocal cords to produce speech.
  • The thick cricoid cartilage forms a ring, with a wide posterior region and a thinner anterior region.

Anterior and right lateral view of the larynx. Image description available.

When the epiglottis is in the “closed” position, the unattached end of the epiglottis rests on the glottis .  A vestibular fold, or false vocal cord, is one of a pair of folded sections of mucous membrane. A true vocal cord is one of the white, membranous folds attached by muscle to the thyroid and arytenoid cartilages of the larynx on their outer edges. The inner edges of the true vocal cords are free, allowing oscillation to produce sound.

The act of swallowing causes the pharynx and larynx to lift upward, allowing the pharynx to expand and the epiglottis of the larynx to swing downward, closing the opening to the trachea. These movements produce a larger area for food to pass through, while preventing food and beverages from entering the trachea.

Cross-section of the vocal cords. Image description available.

Similar to the nasal cavity and nasopharynx, this specialized epithelium produces mucus to trap debris and pathogens as they enter the trachea. The cilia beat the mucus upward towards the laryngopharynx, where it can be swallowed down the esophagus.

The trachea is formed by 16 to 20 stacked, C-shaped pieces of hyaline cartilage that are connected by dense connective tissue. The trachealis muscle and elastic connective tissue together form the fibroelastic membrane . The fibroelastic membrane allows the trachea to stretch and expand slightly during inhalation and exhalation, whereas the rings of cartilage provide structural support and prevent the trachea from collapsing. The trachealis muscle can be contracted to force air through the trachea during exhalation. The trachea is lined with pseudostratified ciliated columnar epithelium, which is continuous with the larynx. The esophagus borders the trachea posteriorly .

Trachea and lungs. Image description available.

Bronchial Tree

The trachea branches into the right and left primary bronchi at the carina . These bronchi are also lined by pseudostratified ciliated columnar epithelium containing mucus-producing goblet cells ( Figure 7.7b ). The carina is a raised structure that contains specialized nervous tissue that induces violent coughing if a foreign body, such as food, is present. Rings of cartilage, similar to those of the trachea, support the structure of the bronchi and prevent their collapse. The primary bronchi enter the lungs at the hilum . The bronchi continue to branch into bronchial a tree. A bronchial tree (or respiratory tree) is the collective term used for these multiple-branched bronchi. The main function of the bronchi, like other conducting zone structures, is to provide a passageway for air to move into and out of each lung. The mucous membrane traps debris and pathogens.

A bronchiole branches from the tertiary bronchi. Bronchioles, which are about 1 mm in diameter, further branch until they become the tiny terminal bronchioles, which lead to the structures of gas exchange. There are more than 1000 terminal bronchioles in each lung. The muscular walls of the bronchioles do not contain cartilage like those of the bronchi. This muscular wall can change the size of the tubing to increase or decrease airflow through the tube.

Respiratory Zone

In contrast to the conducting zone , the respiratory zone includes structures that are directly involved in gas exchange. The respiratory zone begins where the terminal bronchioles join a respiratory bronchiole, the smallest type of bronchiole (see Figure 7.8 ), which then leads to an alveolar duct, opening into a cluster of alveoli.

The respiratory zone. Image description available.

An alveolar duc opens into a cluster of alveoli. An alveolus is one of the many small, grape-like sacs that are attached to the alveolar ducts. An alveolar sac is a cluster of many individual alveoli that are responsible for gas exchange. An alveolus is approximately 200 μm in diameter with elastic walls that allow the alveolus to stretch during air intake, which greatly increases the surface area available for gas exchange. Alveoli are connected to their neighbors by alveolar pores, which help maintain equal air pressure throughout the alveoli and lung (see Figure 7.9 ).

Structures of the respiratory zone. Image description available.

Concept Check

  • What are the components of the bronchial tree?
  • What is the purpose of cilia ?
  • Where does gas exchange take place?

Gross Anatomy of the Lungs

The lungs are pyramid-shaped, paired organs that are connected to the trachea by the right and left bronchi; on the inferior surface, the lungs are bordered by the diaphragm . The lungs are enclosed by the pleurae, which are attached to the mediastinum. The right lung is shorter and wider than the left lung, and the left lung occupies a smaller volume than the right. The cardiac notch   allows space for the heart (see Figure 7.10 ). The apex of the lung is the superior region, whereas the base is the opposite region near the diaphragm. The costal surface of the lung borders the ribs. The mediastinal surface faces the mid line.

Gross anatomy of the lungs. Image description available.

Each lung is composed of smaller units called lobes. Fissures separate these lobes from each other. The right lung consists of three lobes: the superior, middle, and inferior lobes. The left lung consists of two lobes: the superior and inferior lobes.  A pulmonary lobule is a subdivision formed as the bronchi branch into bronchioles. Each lobule receives its own large bronchiole that has multiple branches. An interlobular septum is a wall, composed of connective tissue, which separates lobules from one another.

Can you correctly label the respiratory system structures?

Physiology (function) of the respiratory system, blood supply.

The major function of the lungs is to perform gas exchange, which requires blood from the pulmonary circulation.

  • This blood supply contains deoxygenated blood and travels to the lungs where erythrocytes pick up oxygen to be transported to tissues throughout the body.
  • The pulmonary artery carries deoxygenated, arterial blood to the alveoli.
  • The pulmonary artery branches multiple times as it follows the bronchi, and each branch becomes progressively smaller in diameter.
  • One arteriole and an accompanying venule supply and drain one pulmonary lobule. As they near the alveoli, the pulmonary arteries become the pulmonary capillary network.
  • The pulmonary capillary network consists of tiny vessels with very thin walls that lack smooth muscle fibers.
  • The capillaries branch and follow the bronchioles and structure of the alveoli. It is at this point that the capillary wall meets the alveolar wall, creating the respiratory membrane.
  • Once the blood is oxygenated, it drains from the alveoli by way of multiple pulmonary veins, which exit the lungs through the hilum .

Nervous Innervation

The blood supply of the lungs plays an important role in gas exchange and serves as a transport system for gases throughout the body. Innervation by the both the parasympathetic and sympathetic nervous systems provides an important level of control through dilation and constriction of the airway.

  • The parasympathetic system causes bronchoconstriction.
  • The sympathetic nervous system stimulates bronchodilation.

Reflexes such as coughing, and the ability of the lungs to regulate oxygen and carbon dioxide levels, also result from autonomic nervous system control. Sensory nerve fibers arise from the vagus nerve, and from the second to fifth thoracic ganglia. The pulmonary plexus is a region on the lung root formed by the entrance of the nerves at the hilum. The nerves then follow the bronchi in the lungs and branch to innervate muscle fibers, glands, and blood vessel s.

Pleura of the Lungs

Each lung is enclosed within a cavity that is surrounded by the pleura. The pleura (plural = pleurae) is a serous membrane that surrounds the lung. The right and left pleurae, which enclose the right and left lungs, respectively, are separated by the mediastinum.

The pleurae consist of two layers:

  • The visceral pleura is the layer that is superficial to the lungs, and extends into and lines the lung fissures (see Figure 7.11 ).
  • The parietal pleura is the outer layer that connects to the thoracic wall, the mediastinum, and the diaphragm.

The visceral and parietal pleurae connect to each other at the hilum . The pleural cavity is the space between the visceral and parietal layers.

Parietal and visceral pleurae of the lungs. Image description available.

The pleurae perform two major functions:

  • Produce pleural fluid that that lubricates surfaces, reduces friction to prevent trauma during breathing, and creates surface tension that helps maintain the position of the lungs against the thoracic wall. This adhesive characteristic of the pleural fluid causes the lungs to enlarge when the thoracic wall expands during ventilation, allowing the lungs to fill with air.
  • The pleurae also create a division between major organs that prevents interference due to the movement of the organs, while preventing the spread of infection.

Pulmonary Ventilation

The difference in pressures drives pulmonary ventilation because air flows down a pressure gradient, that is, air flows from an area of higher pressure to an area of lower pressure.

  • Air flows into the lungs largely due to a difference in pressure; atmospheric pressure is greater than intra-alveolar pressure, and intra-alveolar pressure is greater than intrapleural pressure.
  • Air flows out of the lungs during expiration based on the same principle; pressure within the lungs becomes greater than the atmospheric pressure.

Pulmonary ventilation comprises two major steps: inspiration and expiration. Inspiration is the and expiration ( Figure 7.12 ). A respiratory cycle is one sequence of inspiration and expiration.

Two muscle groups are used during normal inspiration t he diaphragm and the external intercostal muscles. Additional muscles can be used if a bigger breath is required.

  • The diaphragm contracts, it moves inferiorly toward the abdominal cavity, creating a larger thoracic cavity and more space for the lungs.
  • The external intercostal muscles contract and moves the ribs upward and outward, causing the rib cage to expand, which increases the volume of the thoracic cavity.

Due to the adhesive force of the pleural fluid, the expansion of the thoracic cavity forces the lungs to stretch and expand as well. This increase in volume leads to a decrease in intra-alveolar pressure, creating a pressure lower than atmospheric pressure. As a result, a pressure gradient is created that drives air into the lungs.

Inspiration and expiration process diagram. Image description available.

The process of normal expiration is passive, meaning that energy is not required to push air out of the lungs.

  • The elasticity of the lung tissue causes the lung to recoil, as the diaphragm and intercostal muscles relax following inspiration.
  • The thoracic cavity and lungs decrease in volume, causing an increase in interpulmonary pressure. The interpulmonary pressure rises above atmospheric pressure, creating a pressure gradient that causes air to leave the lungs.

There are different types, or modes, of breathing that require a slightly different process to allow inspiration and expiration:

  • Quiet breathing , also known as eupnea , is a mode of breathing that occurs at rest and does not require the cognitive thought of the individual. During quiet breathing, the diaphragm and external intercostals must contract.
  • Diaphragmatic breathing , also known as deep breathing, requires the diaphragm to contract. As the diaphragm relaxes, air passively leaves the lungs.
  • Costal breathing , also known as a shallow breath, requires contraction of the intercostal muscles. As the intercostal muscles relax, air passively leaves the lungs.
  • During forced inspiration , muscles of the neck contract and lift the thoracic wall, increasing lung volume.
  • During forced expiration , accessory muscles of the abdomen contract, forcing abdominal organs upward against the diaphragm. This helps to push the diaphragm further into the thorax, pushing more air out. In addition, accessory muscles help to compress the rib cage, which also reduces the volume of the thoracic cavity.
  • What type of breathing are you doing?
  • What type of  breathing are you doing?

Respiratory Rate and Control of Ventilation

Respiratory rate is the total number of breaths that occur each minute.

Breathing usually occurs without thought, although at times you can consciously control it, such as when you swim under water, sing a song, or blow bubbles. The respiratory rate is the total number of breaths that occur each minute. Respiratory rate can be an important indicator of disease, as the rate may increase or decrease during an illness or in a disease condition. The respiratory rate is controlled by the respiratory center located within the medulla oblongata in the brain, which responds primarily to changes in carbon dioxide, oxygen, and pH levels in the blood.

The normal respiratory rate of a child decreases from birth to adolescence:

  • A child under 1 year of age has a normal respiratory rate between 30 and 60 breaths per minute.
  • By the time a child is about 10 years old, the normal rate is closer to 18 to 30.
  • By adolescence, the normal respiratory rate is similar to that of adults, 12 to 18 breaths per minute.

Media 7.1. Respiratory System, Part 2: Crash Course A&P #32 [Online video]. Copyright 2015 by CrashCourse .

Medical Terms not Easily Broken into Word Parts

Common respiratory abbreviations, diseases and disorders.

A variety of diseases can affect the respiratory system, such as asthma, emphysema, chronic obstruction pulmonary disorder (COPD), and lung cancer. All of these conditions affect the gas exchange process and result in labored breathing and other difficulties.  (Betts, et al., 2013).

The Effects of Second-Hand Tobacco Smoke

  • It is estimated that the risk of developing lung cancer is increased by up to 30 percent in nonsmokers who live with an individual who smokes in the house, as compared to nonsmokers who are not regularly exposed to second-hand smoke.
  • Children who live with an individual who smokes inside the home have a larger number of lower respiratory infections, which are associated with hospitalizations, and higher risk of sudden infant death syndrome (SIDS). Second-hand smoke in the home has also been linked to a greater number of ear infections in children, as well as worsening symptoms of asthma (Betts, et al., 2013).

Chronic Obstructive Pulmonary Disease (COPD)

COPD is a term used to represent a number of respiratory diseases including chronic bronchitis and emphysema. COPD is a chronic condition with most symptoms appearing in people in their middle 50s. Symptoms include shortness of breath, cough, and sputum production. Symptoms during flare ups or times of exacerbation , may include green or brown mucous, increase in the viscosity or amount of mucus, chest pain, fever, swollen ankles, headaches, dizziness, and blue lips or fingers  There is no cure for COPD. Shortness of breath may be controlled with bronchodilators . The best plan is to avoid triggers and getting sick. Clients with COPD are advised to avoid people who are sick, get the flu shot and reduce their exposure to pollution and cigarette smoke. While there are several risk factors 80% of cases are associated with cigarette smoking (Government of Canada, 2018) . To learn more about COPD visit the Public Health Agency of Canada’s web page on COPD.

Asthma is a common chronic condition that affects all age groups. In 2011/2012 there were 3.8 million Canadians diagnosed with asthma and a disproportionate number of children and youth (Government of Canada, 2018). To learn more, visit the Asthma in Canada Data Blog . Asthma is a chronic disease characterized by inflammation, edema of the airway, and bronchospasms which can inhibit air from entering the lungs. Bronchospasms can lead to an “asthma attack.” An attack may be triggered by environmental factors such as dust, pollen, pet hair, or dander, changes in the weather, mold, tobacco smoke, and respiratory infections, or by exercise and stress (Betts, et al., 2013).

Symptoms of an asthma attack involve coughing, shortness of breath, wheezing, and tightness of the chest. Symptoms of a severe asthma attack require immediate medical attention and may include dyspnea that results in cyanotic lips or face, confusion, drowsiness, a rapid pulse, sweating, and severe anxiety. The severity of the condition, frequency of attacks, and identified triggers influence the type of medication that an individual may require. Longer-term treatments are used for those with more severe asthma. Short-term, fast-acting drugs that are used to treat an asthma attack are typically administered via an inhaler. For young children or individuals who have difficulty using an inhaler, asthma medications can be administered via a nebulizer (Betts, et al., 2013.

Lung Cancer

Lung cancer is a leading cause of cancer death among both males and females in Canada with 98% occurring in adults over 50. Symptoms often appear in the late stages with 50% being diagnosed at STAGE IV (Government of Canada, 2019a). Symptoms may include shortness of breath, wheezing, blood in the mucus, chronic chest infections, dysphagia , pleural effusion, and enlarged lymph nodes. There are two types of lung cancer, small cell lung cancer (SCLC) linked to cigarette smoking, grows quickly and metastasizes. Non-small cell lung cancer (NSCLC) is more common and grows slowly. Changes in lung cells may lead to benign tumours or malignant tumours. Cancers that start in other parts of the body may metastasize to the lungs. Risk factors include smoking, air pollution, family history exposure to second-hand smoke, exposure to radon gas, and exposure to carcinogens (Government of Canada, 2019). Treatment will depend on the type of lung cancer and the stage at diagnosis. Treatments may include surgery, chemotherapy, targeted therapy, immunotherapy, and radiation therapy (Government of Canada, 2019a).

Sleep Apnea

Sleep apnea is a chronic disorder that occurs in children and adults. It is characterized by the cessation of breathing during sleep. These episodes may last for several seconds or several minutes, and may differ in the frequency with which they are experienced. Sleep apnea leads to poor sleep, symptoms include fatigue, evening napping, irritability, memory problems, morning headaches, and excessive snoring. A diagnosis of sleep apnea is usually done during a sleep study, where the patient is monitored in a sleep laboratory for several nights. Treatment of sleep apnea commonly includes the use of a device called a continuous positive airway pressure (CPAP) machine during sleep. The CPAP machine has a mask that covers the nose, or the nose and mouth, and forces air into the airway at regular intervals. This pressurized air can help to gently force the airway to remain open, allowing more normal ventilation to occur (Betts, et al., 2013).

Medical Terms in Context

Medical specialties and procedures related to the respiratory system, respiratory medicine (respirology).

Respiratory medicine is concerned with the diagnosis and treatment of diseases related to the respiratory system. Respiratory medicine requires in-depth knowledge of internal medicine.  A physician who specializes in respirology is called a respirologist. Physicians specialize with three years in either adult or pediatric respiratory medicine in addition to three-years core training in internal medicine or pediatric medicine (Canadian Medical Association, 2018). For more information, visit the Canadian Medical Association’s information page (PDF file) on respirology.

Respiratory Therapists (RTs)

Respiratory Therapists (RTs) are health care professionals that monitor, assess and treat people who are having problems breathing. RTs are regulated which means they must be a member of the College of Respiratory Therapists of Ontario to work as an RT in Ontario. RTs are trained in ventilation and airway management, cardiopulmonary resuscitation, oxygen and aerosol therapy. They care for patients during cardiac stress-testing, pulmonary function testing, smoking cessation, high-risk births, rehabilitation, and surgery. They treat patients with asthma, bronchitis, COPD, emphysema, heart disease, and pneumonia (College of Respiratory Therapists of Ontario, n.d.). For more information, visit the College of Respiratory Therapist’s What is a Respiratory Therapist? web page.

Thoracic Surgeon

A thoracic surgeon refers to a surgeon who has specialized in either thoracic (chest) surgery or cardiothoracic (heart and chest) surgery and care or perform surgery for patients with serious conditions of the chest (London Health Sciences Centre, 2020). To learn more, visit the London Health Science Centre’s Welcome to Thoracic Surgery web page .

Spirometry Testing

Spirometry testing is used to find out how well lungs are working by measuring air volume.

  • Respiratory volume , describes the amount of air in a given space within the lungs, or which can be moved by the lung, and is dependent on a variety of factors.
  • Tidal volume , refers to the amount of air that enters the lungs during quiet breathing, whereas inspiratory reserve volume is the amount of air that enters the lungs when a person inhales past the tidal volume.
  • Expiratory reserve volume , is the extra amount of air that can leave with forceful expiration, following tidal expiration.
  • Residual volume, is the amount of air that is left in the lungs after expelling the expiratory reserve volume.
  • Respiratory capacity, is the combination of two or more volumes.
  • Anatomical dead space, refers to the air within the respiratory structures that never participates in gas exchange, because it does not reach functional alveoli.
  • Respiratory rate, is the number of breaths taken per minute, which may change during certain diseases or conditions.

Both respiratory rate and depth are controlled by the respiratory centers of the brain, which are stimulated by factors such as chemical and pH changes in the blood. These changes are sensed by central chemoreceptors, which are located in the brain, and peripheral chemoreceptors, which are located in the aortic arch and carotid arteries. A rise in carbon dioxide or a decline in oxygen levels in the blood stimulates an increase in respiratory rate and depth (Betts, et al., 2013).

Media 7.3. Spirometry [Online video]. Copyright 2009 by freshwaterl .

Respiratory System Vocabulary

Alveolar Duc

A tube composed of smooth muscle and connective tissue.

Pertaining to front.

Unconsciously regulates.

Non-cancerous.

Bronchodilators

Substance that dilates the bronchi and bronchioles.

Carcinogenic

Causing cancer.

Cardiac Notch

The cardiac notch is an indentation on the surface of the left lung.

The carina is a ridge of cartilage that separates the two main bronchi.

Stop or stopping.

A condition the lasts over a long time with periods of exacerbation and periods of remission.

Conducting Zone

The major functions of the conducting zone are to provide a route for incoming and outgoing air, remove debris and pathogens from the incoming air, and warm and humidify the incoming air. Several structures within the conducting zone perform other functions as well. The epithelium of the nasal passages, for example, is essential to sensing odors, and the bronchial epithelium that lines the lungs can metabolize some airborne carcinogens.

Pertaining to abnormal colour of blue (bluish colour, lips and nail beds) caused by deoxygenation.

The lysozyme enzyme and proteins which have antibacterial properties.

A flat, dome shaped muscle located at the base of the lungs and thoracic cavity.

Difficulty breathing.

The epiglottis, attached to the thyroid cartilage, is a very flexible piece of elastic cartilage that covers the opening of the trachea.

Erythrocytes

Red blood cells.

Normal breathing.

Exhalation or the process of causing air to leave the lungs.

External nose

The external nose consists of the surface and skeletal structures that result in the outward appearance of the nose and contribute to its numerous functions.

The fauces is the opening at the connection between the oral cavity and the oropharynx.

Fibroelastic Membrane

A fibroelastic membrane is a flexible membrane that closes the posterior surface of the trachea, connecting the C-shaped cartilages.

The glottis is composed of the vestibular folds, the true vocal cords, and the space between these folds.

Hard Palate

The hard palate is located at the anterior region of the nasal cavity and is composed of bone.

The hilum of the lungs is a depression on the medial surface of the lungs that forms an opening for the bronchus, blood vessels, and nerves.

Forced breathing or breathing that is excessive.

Pertaining to below.

Inspiration

Inhalation or process of breathing air into the lungs.

Pertaining to the larynx.

Laryngopharynx

The laryngopharynx borders the oropharynx, trachea, and esophagus.

The larynx is a cartilaginous structure inferior to the laryngopharynx that connects the pharynx to the trachea and helps regulate the volume of air that enters and leaves the lungs. Also known as the voice box.

Pertaining to the tongue.

Lymphocytes

Lymphocytes are lymph cells, a type of white blood cell.

Nasopharynx

The nasopharynx serves as an airway and is continuous with the nasal cavity.

The oropharynx is a passageway for both air and food and borders the nasopharynx and the oral cavity.

Pertaining to the pharynx.

Pharyngeal Tonsils

A pharyngeal tonsil, also called an adenoid, is an aggregate of lymphoid reticular tissue similar to a lymph node that lies at the superior portion of the nasopharynx.

The pharynx is a tube formed by skeletal muscle and lined by mucous membrane that is continuous with that of the nasal cavities. Also known as the throat.

Pertaining to behind.

Pulmonary Artery

The pulmonary artery is the artery that arises from the pulmonary trunk.

The respiratory zone includes structures that are directly involved in gas exchange.

Excessive flow or discharge from the nasal cavity (runny nose).

Septal Cartilage

The flexible portion you can touch with your fingers.

Soft Palate

The soft palate is located at the posterior portion of the nasal cavity and consists of muscle tissue.

Sympathetic

Flight or fight response.

The trachea (windpipe) extends from the larynx toward the lungs.

The uvula is a small bulbous, teardrop-shaped structure located at the apex of the soft palate.

Test Yourself

Canadian Cancer Society. (2020). Treatments for non–small cell lung cancer . Cancer Information. https://www.cancer.ca/en/cancer-information/cancer-type/lung/treatment/?region=on

Canadian Medical Association. (2018, August). Respirology profile . Canadian Specialty Profiels. https://www.cma.ca/sites/default/files/2019-01/respirology-e.pdf

College of Respiratory Therapists of Ontario. (n.d.). What is a respiratory therapist? . https://www.crto.on.ca/public/what-is-respiratory-therapy/

CrashCourse. (2015, August 24). Respiratory system, part 1: crash course A&P #31 [Video]. YouTube. https://youtu.be/bHZsvBdUC2I

CrashCourse. (2015, August 31). Respiratory system, part 2: crash course A&P #32 [Video]. YouTube. https://youtu.be/Cqt4LjHnMEA

[freshwaterl]. (2009, September 11). Spirometry [Video]. YouTube. https://youtu.be/y9eiVqddVVo

Government of Canada. (2018, May 1). Asthma in Canada . Data Blog, Government of Canada. https://health-infobase.canada.ca/datalab/asthma-blog.html

Government of Canada. (2019, October 21). Lung cancer . Public Health Agency of Canada. https://www.canada.ca/en/public-health/services/chronic-diseases/cancer/lung-cancer.html

Government of Canada. (2019a, October 21). Lung cancer in Canada . Public Health Agency of Canada. https://www.canada.ca/en/public-health/services/publications/diseases-conditions/lung-cancer.html

London Health Sciences Centre. (2020). Welcome to thoracic surgery . https://www.lhsc.on.ca/thoracic-surgery/welcome-to-thoracic-surgery

Image Descriptions

Figure 7.1 image description: This figure shows the upper half of the human body. The major organs in the respiratory system are labeled. [Return to Figure 7.1].

Figure 7.2 image description: This figure shows a cross section view of the nose and throat. The major parts are labeled. [Return to Figure 7.2].

Figure 7.3 image description: This figure shows a micrograph of pseudostratified epithelium. [Return to Figure 7.3].

Figure 7.4 image description: This figure shows the side view of the face. The different parts of the pharynx are color-coded and labeled (from the top): nasal cavity, hard palate, soft palate, tongue, epiglotis, larynx, esophagus, trachea. [Return to Figure 7.4].

Figure 7.5 image description: The top panel of this figure shows the anterior view of the larynx, and the bottom panel shows the right lateral view of the larynx. [Return to Figure 7.5].

Figure 7.6 image description: This diagram shows the cross section of the larynx. The different types of cartilages are labeled (clockwise from top): pyriform fossa, true vocal cord, epiglottis, tongue, glottis, vestibular fold, trachea, esophagus. [Return to Figure 7.6].

Figure 7.7 image description: The top panel of this figure shows the trachea and its organs. The major parts including the larynx, trachea, bronchi, and lungs are labeled. [Return to Figure 7.7].

Figure 7.8 image description: This image shows the bronchioles and alveolar sacs in the lungs and depicts the exchange of oxygenated and deoxygenated blood in the pulmonary blood vessels. [Return to Figure 7.8].

Figure 7.9 image description: This figure shows the detailed structure of the alveolus. The top panel shows the alveolar sacs and the bronchioles. The middle panel shows a magnified view of the alveolus, and the bottom panel shows a micrograph of the cross section of a bronchiole. [Return to Figure 7.9].

Figure 7.10 image description: Diagram of the lungs with the major parts labelled (from top, clockwise): trachea, superior lobe, main bronchus, lobar bronchus, segmental bronchus, inferior lobe, inferior lobe, middle lobe, superior lobe of the left lung. [Return to Figure 7.10].

Figure 7.11 image description: This figure shows the lungs and the chest wall, which protects the lungs, in the left panel. In the right panel, a magnified image shows the pleural cavity and a pleural sac. [Return to Figure 7.11].

Figure 7.12 image description: The left panel of this image shows a person inhaling air and the location of the chest muscles. The right panel shows the person exhaling air and the contraction of the thoracic cavity. [Return to Figure 7.12].

Unless otherwise indicated, this chapter contains material adapted from Anatomy and Physiology (on OpenStax ), by Betts, et al. and is used under a a CC BY 4.0 international license . Download and access this book for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction .

unconsciously regulates

The external nose consists of the surface and skeletal structures that result in the outward appearance of the nose and contribute to its numerous functions

nasal cavity

the flexible portion you can touch with your fingers (Betts, et al., 2013)

located at the anterior region of the nasal cavity and is composed of bone

located at the posterior portion of the nasal cavity and consists of muscle tissue

excessive flow or discharge from the nasal cavity (runny nose)

The lysozyme enzyme and proteins which have antibacterial properties (Betts, et al., 2013)

The pharynx is a tube formed by skeletal muscle and lined by mucous membrane that is continuous with that of the nasal cavities (Betts, et al., 2013). Also known as the throat.

pertaining to the pharynx

lymph cells, a type of white blood cell

The uvula is a small bulbous, teardrop-shaped structure located at the apex of the soft palate (Betts, et al., 2013)

The nasopharynx serves as an airway and is continuous with the nasal cavity

The oropharynx is a passageway for both air and food and borders the nasopharynx and the oral cavity (Betts, et al., 2013)

The fauces is the opening at the connection between the oral cavity and the oropharynx

pertaining to the tongue

pertaining to below

pertaining to behind

Pertaining to front

The larynx is a cartilaginous structure inferior to the laryngopharynx that connects the pharynx to the trachea and helps regulate the volume of air that enters and leaves the lungs (Betts. et al., 2013) AKA the voice box

pertaining to the larynx

The epiglottis, attached to the thyroid cartilage, is a very flexible piece of elastic cartilage that covers the opening of the trachea (Betts. et al., 2013)

The glottis is composed of the vestibular folds, the true vocal cords, and the space between these folds (Betts et al, 2013)

The trachea (windpipe) extends from the larynx toward the lungs

a flexible membrane that closes the posterior surface of the trachea, connecting the C-shaped cartilages

ridge of cartilage that separates the two main bronchi

A concave region where blood vessels, lymphatic vessels, and nerves also enter the lungs

The major functions of the conducting zone are to provide a route for incoming and outgoing air, remove debris and pathogens from the incoming air, and warm and humidify the incoming air. Several structures within the conducting zone perform other functions as well. The epithelium of the nasal passages, for example, is essential to sensing odors, and the bronchial epithelium that lines the lungs can metabolize some airborne carcinogens (Betts, et al., 2013).

the respiratory zone includes structures that are directly involved in gas exchange (Betts, et al., 2013)

a tube composed of smooth muscle and connective tissue (Betts. et al., 2013)

A flat, dome shaped muscle located at the base of the lungs and thoracic cavity

is an indentation on the surface of the left lung

red blood cells

artery that arises from the pulmonary trunk

rest and relaxation phase

flight or fight response

inhalation or process of breathing air into the lungs

exhalation or the process of causing air to leave the lungs

normal breathing

forced breathing or breathing that is excessive

absence of a regular heart rhythm

causing cancer

a condition that lasts a long time with periods of remission and exacerbation

increase in severity of a problem

substance that dilates the bronchi and bronchioles

difficult breathing

pertaining to abnormal discolouration of blue (bluish colour, lips and nail beds) caused by deoxygenation.

difficulty swallowing

noncancerous, harmless

Stop/stopping

Building a Medical Terminology Foundation Copyright © 2020 by Kimberlee Carter and Marie Rutherford is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

ASSIGNMENT 2: The respiratory System

Picture

Respiratory System (Anatomy)

Definition: The respiratory system (also referred to as the ventilator system) is a complex biological system comprised of several organs that facilitate the inhalation and exhalation of oxygen and carbon dioxide in living organisms (or, in other words, breathing). Most of the organs of the respiratory system help to distribute air, but only the tiny, grape-like alveoli and the alveolar ducts are responsible for actual gas exchange.

In addition to air distribution and gas exchange, the respiratory system filters warm and humidify the air we breathe. Organs in the respiratory system also play a role in speech and the sense of smell. It also helps the body maintain homeostasis, or balance among the many elements of the body’s internal environment.

In most fish, and a number of other aquatic animals (both vertebrates and invertebrates) the respiratory system consists of gills, which are either partially or completely external organs, bathed in the watery environment. Other animals, such as insects, have respiratory systems with very simple anatomical features, and in amphibians, even the skin plays a vital role in gas exchange. Plants also have respiratory systems but the directionality of gas exchange can be opposite to that in animals. The respiratory system in plants includes anatomical features such as stomata, that are found in various parts of the plant.

A properly functioning respiratory system is a vital part of our good health. Respiratory infections can be acute and sometimes life-threatening. They can also be chronic, in which case they place tremendous long-term stress on the immune system, endocrine system, HPA axis, and much more.

Anatomy of the Respiratory System: In humans and other mammals, the anatomy of a typical respiratory system is the respiratory tract. The tract is divided into an upper and a lower respiratory tract. The upper tract includes the nose, nasal cavities, sinuses, pharynx and the part of the larynx above the vocal folds. The lower tract includes the lower part of the larynx, the trachea, bronchi, bronchioles, and the alveoli.

The respiratory system is divided into two main components:

Upper respiratory tract: Composed of the nose, the pharynx, and the larynx, the organs of the upper respiratory tract are located outside the chest cavity.

  • Nasal cavity: Inside the nose, the sticky mucous membrane lining the nasal cavity traps dust particles, and tiny hairs called cilia help move them to the nose to be sneezed or blown out.
  • Sinuses: These air-filled spaces alongside the nose help make the skull lighter.
  • Pharynx: Both food and air pass through the pharynx before reaching their appropriate destinations. The pharynx also plays a role in speech.
  • Larynx: The larynx is essential to human speech.

Lower respiratory tract: Composed of the trachea, the lungs, and all segments of the bronchial tree (including the alveoli), the organs of the lower respiratory tract are located inside the chest cavity.

  • Trachea: Located just below the larynx, the trachea is the main airway to the lungs.
  • Lungs: Together the lungs form one of the body’s largest organs. They’re responsible for providing oxygen to capillaries and exhaling carbon dioxide.
  • Bronchi: The bronchi branch from the trachea into each lung and create the network of intricate passages that supply the lungs with air.
  • Diaphragm: The diaphragm is the main respiratory muscle that contracts and relaxes to allow air into the lungs.

The major organs of the respiratory system function primarily to provide oxygen to body tissues for cellular respiration, remove the waste product carbon dioxide, and help to maintain acid-base balance. Portions of the respiratory system are also used for non-vital functions, such as sensing odors, speech production, and for straining, such as during childbirth or coughing.

The alveoli are the dead end terminals of the “tree”, meaning that any air that enters them has to exit via the same route. A system such as this creates dead space, a volume of air (about 150 ml in the adult human) that fills the airways after exhalation and is breathed back into the alveoli before the environmental air reaches them. At the end of inhalation, the airways are filled with environmental air, which is exhaled without coming in contact with the gas exchanger.

Functionally, the respiratory system can be divided into a conducting zone and a respiratory zone. The conducting zone of the respiratory system includes the organs and structures not directly involved in gas exchange. The gas exchange occurs in the respiratory zone.

  • Conducting Zone – The major functions of the conducting zone are to provide a route for incoming and outgoing air, remove debris and pathogens from the incoming air, and warm and humidify the incoming air. Several structures within the conducting zone perform other functions as well. The epithelium of the nasal passages, for example, is essential to sensing odors, and the bronchial epithelium that lines the lungs can metabolize some airborne carcinogens.
  • Respiratory Zone – In contrast to the conducting zone, the respiratory zone includes structures that are directly involved in gas exchange. The respiratory zone begins where the terminal bronchioles join a respiratory bronchiole, the smallest type of bronchiole, which then leads to an alveolar duct, opening into a cluster of alveoli.

Homeostatic Control of Respiration: The last physiological role of the respiratory system is the homeostatic control of respiration or, in other words, the body’s ability to maintain a steady breathing rate. This is termed eupnea. This state should remain constant until the body has a demand for increased oxygen and carbon dioxide levels due to increased exertion, most likely caused by physical activity. When this happens, chemoreceptors will pick up on the increased partial pressure of the oxygen and carbon dioxide and send triggers to the brain. The brain will then signal the respiratory center to make adjustments to the breathing rate and depth in order to face the increased demands.

Clinical significance of the Respiratory system:

Disorders of the respiratory system can be classified into several general groups:

  • Airway obstructive conditions (e.g., emphysema, bronchitis, asthma)
  • Pulmonary restrictive conditions (e.g., fibrosis, sarcoidosis, alveolar damage, pleural effusion)
  • Vascular diseases (e.g., pulmonary edema, pulmonary embolism, pulmonary hypertension)
  • Infectious, environmental and other “diseases” (e.g., pneumonia, tuberculosis, asbestosis, particulate pollutants)
  • Primary cancers (e.g. bronchial carcinoma, mesothelioma)
  • Secondary cancers (e.g. cancers that originated elsewhere in the body, but have seeded themselves in the lungs)
  • Insufficient surfactant (e.g. respiratory distress syndrome in pre-term babies).

Disorders of the respiratory system are usually treated by a pulmonologist and respiratory therapist.

Information Source:

  • opentextbc.ca
  • healthline.com
  • adrenalfatiguesolution.com

Evolutionary Neuroscience

Neurological disorder, neural darwinism, study heralds a new age of programmable, environmentally friendly bioelectronics, c language training, how this program reframes the weight loss concept, the evidence for an increasing indian ocean water cycle is assessed in this review, different aspects of consumer services at standard chartered bank, explain kidney transplant surgery treatment, discuss about biosphere technology, latest post, household air pollution (hap), evaporative air conditioner, construction engineering, endangered seabird demonstrates astonishing individual adaptability to climate change, microbial research resolves a worldwide nitrogen conundrum, storm hardening.

Welcome to today's Assignment on "Respiratory System"

Published: Wed, 02/14/24

NYC fails controversial remote-learning snow day ‘test,’ public schools chancellor says

Image: Large Winter Storm Brings Snow To The Northeast

New York City's public schools chancellor said the city did not pass Tuesday's remote-learning “test” because of technical issues.

“As I said, this was a test. I don’t think that we passed this test,” David Banks said at a news briefing, adding that he felt "disappointed, frustrated and angry" as a result of the technical issues.

NYC Public Schools did a lot of work to prepare for the remote-learning day, Banks said, but shortly before 8 a.m. they were notified that parents and students were having difficulty signing on to remote learning.

Follow along for live coverage of the storm

It is the first time the school system has implemented remote learning on a snow day since it introduced the no-snow-day policy in 2022. The district serves 1.1 million students in more than 1,800 schools.

Banks blamed the technical issues on IBM, which helps facilitate the city’s remote-learning program.

“IBM was not ready for prime time,” Banks said, adding that the company was overwhelmed with the surge of people signing on for school.

IBM has since expanded its capacity, and 850,000 students and teachers are currently online, Banks said.

“We’ll work harder to do better next time,” he said, adding that there will be a deeper analysis into what went wrong.

The new system is controversial among parents who lament the end of the snow days of their childhoods, dread a return to the frustrations that remote learning caused during the pandemic and argue that online learning is a far cry from the classroom.

On Monday, Mayor Eric Adams said parents who are not willing to navigate computers for their children’s remote learning represent “a sad commentary.”

Adams defended his words Tuesday, saying they were related to a specific question he was asked about parents who do not want to sign on to remote learning.

“That is not the energy we should be showing right now. Our children have to catch up. They need to be engaged,” he said.

Adams also blamed IBM for Tuesday’s remote-learning issues, saying he hopes the company will be able to provide the product the city is paying it for.

“IBM, I’m hoping this was a teaching moment for them, as well," Adams said.

In a statement, IBM said it has been working closely with New York City Public Schools "to address this situation as quickly as possible."

An IBM spokesperson said, “The issues have been largely resolved, and we regret the inconvenience to students and parents across the city."

New York City Public Schools were the outlier in implementing remote learning during Tuesday's storm. Hundreds of districts in Boston , Connecticut , Philadelphia  and  New York were shuttered for snow days.

assignment for respiratory system

Breaking news reporter

IMAGES

  1. Respiratory System Slides and Worksheet (GCSE Biology AQA)

    assignment for respiratory system

  2. Chapter 20-21

    assignment for respiratory system

  3. Respiratory System Teaching Activity Worksheets

    assignment for respiratory system

  4. Respiratory System Disorders Assignment

    assignment for respiratory system

  5. Respiratory System Lecture Notes

    assignment for respiratory system

  6. I get to break out one of my favorite charts this week as we start to

    assignment for respiratory system

VIDEO

  1. Respiratory System Part 1 corrected 1

  2. How the respiratory system works?

  3. Respiratory System

  4. Day 4- Respiratory Systems Basics Lecture-1

  5. respiratory system

  6. RESPIRATORY SYSTEM

COMMENTS

  1. 16.2: Structure and Function of the Respiratory System

    The organs of the respiratory system form a continuous system of passages called the respiratory tract, through which air flows into and out of the body. The respiratory tract has two major divisions: the upper respiratory tract and the lower respiratory tract. The organs in each division are shown in Figure 16.2.2 16.2.

  2. Human respiratory system

    human respiratory system, the system in humans that takes up oxygen and expels carbon dioxide. The design of the respiratory system Passage of air through the respiratory tract explained The respiratory tract conveys air from the mouth and nose to the lungs, where oxygen and carbon dioxide are exchanged between the alveoli and the capillaries.

  3. Respiratory System Anatomy and Physiology

    Pharynx Larynx Trachea Main Bronchi Lungs The Respiratory Membrane Physiology of the Respiratory System Respiration Mechanics of Breathing Respiratory Volumes and Capacities Respiratory Sounds External Respiration, Gas Transport, and Internal Respiration Control of Respiration Age-Related Physiological Changes in the Respiratory System See also

  4. Human Respiratory System

    Definition What Is Respiratory System Diagram Features Parts Respiratory Tract Functions Respiratory System Definition "Human Respiratory System is a network of organs and tissues that helps us breathe. The primary function of this system is to introduce oxygen into the body and expel carbon dioxide from the body." What is the Respiratory System?

  5. 21.1B: Functional Anatomy of the Respiratory System

    The primary function of the respiratory system is gas exchange between the external environment and an organism's circulatory system. In humans and other mammals, this exchange balances oxygenation of the blood with the removal of carbon dioxide and other metabolic wastes from the circulation. Bronchial anatomy: The pulmonary alveoli are the ...

  6. The respiratory system review (article)

    The respiratory system. The process of physiological respiration includes two major parts: external respiration and internal respiration. External respiration, also known as breathing, involves both bringing air into the lungs (inhalation) and releasing air to the atmosphere (exhalation). During internal respiration, oxygen and carbon dioxide ...

  7. Anatomy and Physiology of the Respiratory System

    Osmosis High-Yield Notes. This Osmosis High-Yield Note provides an overview of Anatomy and Physiology of the Respiratory System essentials. All Osmosis Notes are clearly laid-out and contain striking images, tables, and diagrams to help visual learners understand complex topics quickly and efficiently. Find more information about Anatomy and ...

  8. Respiratory System: Functions, Facts, Organs & Anatomy

    The respiratory system is the network of organs and tissues that help you breathe. It includes your airways, lungs and blood vessels. The muscles that power your lungs are also part of the respiratory system. These parts work together to move oxygen throughout the body and clean out waste gases like carbon dioxide. Advertisement.

  9. Lab 7: Respiratory Systems

    Lab 7: Respiratory Systems. Susan Burran and David DesRochers. Dalton State College via GALILEO Open Learning Materials. Objective: To understand the microscopic and gross anatomy of the respiratory tract. To observe and measure the mechanics of breathing, respiratory volumes, and the control of breathing. To observe and understand the role of ...

  10. 6.1: Lab 6: Respiratory System

    Background. The respiratory system is responsible for the gas exchange of oxygen and carbon dioxide. The main specialized organs of this process are the lungs which house clusters of sac-like structures known as alveoli.There are from 480 to 790 million alveoli which increase the efficiency of gas exchange by increasing surface area to around 118m 2 in men and 91m 2 in women.

  11. 19.4: Laboratory Activities and Assignment

    Table of contents. Laboratory Activities and Assignment. Part 1: Review of the Respiratory System. Part 2: Examining the Histology of the Respiratory System. Trachea Cross Section. Lung Tissue. Part 3: Mechanism of Breathing (Balloon-and-Bell Jar Model) Materials. Instructions & Questions.

  12. PDF THE RESPIRATORY SYSTEM

    The respiratory system aids in breathing, also called pulmonary ventilation. In pulmonary ventilation, air is inhaled through the nasal and oral cavities (the nose and mouth). It moves through the pharynx, larynx, and trachea into the lungs. Then air is exhaled, flowing back through the same pathway. Changes to the volume and air pressure in ...

  13. Respiratory System Assignment Flashcards

    respiratory. The process of moving air in and out of the lungs is called: pulminary ventilation. The most important stimulus for breathing in a healthy person is the body's need to rid itself of the blood gas called ________. carbon dioxide. The correct pathway air flows through the respiratory system is ________.

  14. Chapter 7.10 Respiratory System assignment sheet Flashcards

    Chapter 7.10 Respiratory System assignment sheet Flashcards | Quizlet Home Subjects Expert Solutions Log in Sign up Science Biology Anatomy Chapter 7.10 Respiratory System assignment sheet 4.8 (4 reviews) Get a hint List 3 things that happen to air when it enters the nasal cavity. Click the card to flip 👆 -warmed -filtered -moistened

  15. Assignment 6.2: Chapter 11 Respiratory System Flashcards

    inflammation of the lungs caused by a variety of pathogens. flail chest. thorax in which multiple rib fractures cause instability in the chest wall. Cheyne-Stokes respiration. deep, rapid breathing followed by a period of apnea. Study with Quizlet and memorize flashcards containing terms like tracheomalacia, tracheostenosis, emphysema and more.

  16. Assignment 3

    The Respiratory System. "A biological system consisting of specific organs and structures used for the process of respiration in an organism. The respiratory system is involved in the intake and exchange of oxygen and carbon dioxide between an organism and the environment." REFERENCES FOR ASSIGNMENT 3. Figure 2 - Spirograph of Breathing Rate at ...

  17. Respiratory System

    Chronic Obstructive Pulmonary Disease (COPD) COPD is a term used to represent a number of respiratory diseases including chronic bronchitis and emphysema. COPD is a chronic condition with most symptoms appearing in people in their middle 50s. Symptoms include shortness of breath, cough, and sputum production.

  18. AHP 106 Wk5 Assignment 1

    d. CO 2 retention causes respiratory alkalosis. Which of the following is correct according to Fig. 25 and Table 25? a. Kussmaul respirations are compensatory for metabolic acidosis. b. Hypoventilation is compensatory for a drug-induced respiratory depression. c. An anxious person may hyperventilate, causing a respiratory acidosis. d.

  19. ASSIGNMENT 2: The respiratory System

    1. Take the breathing rate for one minute at rest before any exercise has take place 2. Exercise for a total of 30 seconds, 60 seconds, 90 seconds, 120 seconds, 150 seconds and 180 seconds and measure the breathing rate for a minute between each length of exercise 3. take note of the results and plot on a graph

  20. Respiratory System (Anatomy)

    Definition: The respiratory system (also referred to as the ventilator system) is a complex biological system comprised of several organs that facilitate the inhalation and exhalation of oxygen and carbon dioxide in living organisms (or, in other words, breathing).

  21. Assignment Respiratory System worksheet

    Assignment: The Respiratory System Label each part of the respiratory system on the lines provided: a)nasal cavity, b)nostril, c)oral cavity, d)larynx, e)trachea, f)left bronchus, g)left bronchioles, h)lungs Complete the sentences by writing the correct word from the diagram of the respiratory system inthe space provided: a.

  22. mastering assignment chapter respiratory system Flashcards

    Which are the functions of the respiratory system? detection of odors. sound production. allows air passage. exchange of O2 and CO2. The trachea is part of the ______ respiratory system. lower. The mucous membrane of the respiratory tract is composed of ______ and is ciliated in most portions of the conducting zone.

  23. Welcome to today's Assignment on "Respiratory System"

    Hello , Thank you for being a part of YLH Welcome to today's Conceptual Mastery Challenge, make sure you do this today. Here is the link to click. Respiratory System We will email in a sequential order to cover all concepts. This month's Daily Assignment You can do it as per your time and in the comment update as done. Make sure you cover all topics for today.

  24. NYC fails controversial remote-learning snow day 'test,' public schools

    It is the first time the school system has implemented remote learning on a snow day since it introduced the no-snow-day policy in 2022. The district serves 1.1 million students in more than 1,800 ...

  25. Ch 7 Respiratory System Coding Assignment Flashcards

    Radical maxillary sinusotomy with removal of antrochoanal polyps. 31032. Indirect laryngoscopy with vocal cord injection. 31513. Percutaneous transtracheal introduction of indwelling tube for oxygen therapy. 31730. Study with Quizlet and memorize flashcards containing terms like Transpalatine repair of choanal atresia, Initial posterior control ...