• Open supplemental data
  • Reference Manager
  • Simple TEXT file

People also looked at

Original research article, the gender pay gap: income inequality over life course – a multilevel analysis.

www.frontiersin.org

  • 1 Department of Medical Sociology, Institute of the History, Philosophy and Ethics of Medicine, Faculty of Medicine, University of Ulm, Ulm, Germany
  • 2 Department of Social Medicine, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands

The gender pay gap has been observed for decades, and still exists. Due to a life course perspective, gender differences in income are analyzed over a period of 24 years. Therefore, this study aims to investigate income trajectories and the differences regarding men and women. Moreover, the study examines how human capital determinants, occupational positions and factors that accumulate disadvantages over time contribute to the explanation of the GPG in Germany. Therefore, this study aims to contribute to a better understanding of the GPG over the life course. The data are based on the German cohort study lidA (living at work), which links survey data individually with employment register data. Based on social security data, the income of men and women over time are analyzed using a multilevel analysis. The results show that the GPG exists in Germany over the life course: men have a higher daily average income per year than women. In addition, the income developments of men rise more sharply than those of women over time. Moreover, even after controlling for factors potentially explaining the GPG like education, work experience, occupational status or unemployment episodes the GPG persists. Concluding, further research is required that covers additional factors like individual behavior or information about the labor market structure for a better understanding of the GPG.

1 Introduction

In the European Union (EU) in 2019, women’s average gross hourly earnings were 14.1% below the earnings of men ( Eurostat, 2021a ). The gender pay gap (GPG) has existed for decades and still remains to date. According to Eurostat GPG statistics, the key priorities of gender policies are to reduce the wage differences between men and women at both the EU and national levels ( Eurostat, 2021a ). Nevertheless, the careers of men and women differ considerably in the labor market, with women being paid less than men ( Arulampalam et al., 2005 ; Radl, 2013 ; Boll et al., 2017 ). A report from the European Parliament in 2015 about gender equality assessed Germany’s performance in that field as mediocre. The federal government in Germany has already improved laws that focus on gender equality ( Botsch, 2015 ). Regarding Germany, in 2019 the earning difference between men and women were found to be 19.2% ( Eurostat, 2021a ). The reasons behind gender income inequality are complex and have multidimensional explanations.

1.1 Determinants of the GPG

The early 1990s represented a turning point for the participation of women in the labor market ( Botsch, 2015 ). In previous years, women’s participation rate in the workforce has strongly increased, from 51.9% in the year 1980 (West Germany) to 74.9% in 2019 ( OECD, 2021 ). This upward trend represents the increase of women working at older ages ( Sackmann, 2018 ). However, the gender income inequality remains. Different explaining factors of the GPG were found in previous research: patterns of employment, access to education and interruptions in the careers of men and women.

Although there are nearly equal numbers of men and women in the labor market, when considering women’s careers, various gender-specific barriers are occurring. The working patterns were found to have a relevant impact on the GPG in previous research. Atypical employment is increasing and this result in an expansion of the low-wage sector, which mainly affects women in Germany ( Botsch, 2015 ). Additionally, labor market integration of women has mainly been in jobs that provide few working hours and low wages ( Botsch, 2015 ). Moreover, part-time employment represents a common employment type in Germany, which is more frequent among women – as various studies have demonstrated – and explains the GPG significantly ( Boll et al., 2017 ; Ponthieux and Meurs, 2015 ; Boll and Leppin, 2015 ). In addition, the part-time employment occurs more often in occupations characterized by a high proportion of women and low wages ( Matteazzi et al., 2018 ; Boll and Leppin, 2015 ; Hasselhorn, 2020 ; Manzoni et al., 2014 ). Another employment type with few working hours and low pay is a special form of part-time work: marginal work. Marginal work is defined as earnings up to 450 Euros per month or up to 5.400 Euros annually. Also, it is also more common among women than among men ( Botsch, 2015 ; Broughton et al., 2016 ). The marginal part-time work has increased in nearly all EU countries, especially in Germany where it can be found to be above the EU average ( Broughton et al., 2016 ). Besides the working time, occupational status influences the wage differences of men and women. Female-dominated occupational sectors are characterized by lower wages compared to male-dominated ones ( Brynin and Perales, 2016 ). Additionally, in women-dominant industries, remunerations are less attractive and it often entails low-status work in sectors like retail, caregiving or education ( Boll and Leppin, 2015 ; Hasselhorn, 2020 ; Matteazzi et al., 2018 ; Brynin and Perales, 2016 ). Hence, working patterns such as the amount of working time or the occupational status are crucial determinants that contribute to explaining the GPG in Germany ( Blau and Kahn, 2017 ; Boll et al., 2017 ).

The access to education and vocational training are important factors, that influence the GPG. Both influence a first access to the labor market and are considered to be ‘door openers’ for the working life ( Manzoni et al., 2014 ). In Germany, education represents a largely stable variable over time, i.e. only few individuals increase their first educational attainment. Education influences the careers of men and women and can be seen as important an determinant of future earnings ( Boll et al., 2017 ; Bovens and Wille, 2017 ). Although women’s educational attainment caught up with those of men’s in recent years, for men, a higher qualification was still rewarded more than for women ( Botsch, 2015 ; Boll et al., 2017 ). Moreover, in previous research the impact of education on the GPG was not found to be consistent with different influences for men than for women ( Aisenbrey and Bruckner, 2008 ; Ponthieux and Meurs, 2015 ). Manzoni et al. (2014) found out, that the effect of education on career developments were dependent of their particular educational levels. In addition, regardless of the women’s educational catching-up in the last years, looking at older cohorts – born between 1950 and 1964 – women had a lower average level of education than men ( Boll et al., 2017 ).

An increasing GPG over time can also be the result of interruptions in careers, which are found more often for women than for men ( Eurostat, 2021a ; Boll and Leppin, 2015 ). Previous research of Boll and Leppin (2015) has identified explanations for the GPG in Germany by analyzing data from the German Socio-Economic Panel (SOEP) in 2011. They demonstrated that the amount of time spent in actual work was lower for women than for men. Therefore, women gain less work experience than their male counterparts ( Boll and Leppin, 2015 ). Career interruptions not only impact the accumulation of work experience but also the scope of future work. Especially in the period of family formation higher rates of part-time employment among women can be observed ( Boll et al., 2017 ; Ponthieux and Meurs, 2015 ). Moreover, work-life interruptions such as raising children or caring for family members have a major impact on the employment development and are more likely to appear for women than for men ( Ponthieux and Meurs, 2015 ). Although the employment rate of mothers has increased in recent years in Germany, it is still considerably lower than that of fathers ( Federal Statistical Office, 2021 ). Hence, taking care of children is still attributed to mothers, to the detriment of their careers ( Botsch, 2015 ). A recent study, however, found sizable wage differences between men and women who were not parents, refuting the assumption that the GPG applies only to parents ( Joshi et al., 2020 ). Other interruptions in the working lives of men and women are caused by unemployment. Azmat et al. (2006) found that in Germany, transition rates from employment to unemployment were higher for women than for men. Career interruptions have lasting negative effects on women’s wages. Therefore, it can be useful to examine unemployment when analyzing gender inequality in the labor market ( Eurostat, 2021b ).

1.2 Theoretical Background

1.2.1 human capital model.

In previous research, economic theories had been applied to explain the income differences of men and women. Two essential factors could be found: qualification and discrimination. The human capital model claims that qualifications with greater investments can be directly related to higher wages of men and women. The earnings are assumed to be based on skills and abilities that are required through education and vocational training, and work experience ( Grybaitė, 2006 ; Lips, 2013 ; Blau and Kahn, 2007 ). Educational attainment of women has caught up in recent years ( Botsch, 2015 ). However, women’s investments in qualifications were still not equally rewarded as those of men. Therefore, the expected narrowing of the GPG was not confirmed in earlier research ( Boll et al., 2017 ; Lips, 2013 ). Another determinant of the human capital model is work experience. Labor market experience contributes to a large extent to the gender inequality in earnings ( Sierminska et al., 2010 ). Hence, work experience influences the wages of men and women. On the one hand, interruptions due to family life lower especially women’s labor market experience compared to men. On the other hand, part-time employment is more frequent among women with fewer working hours and therefore less work experience. The lesser accumulation of work experience leads to lower human capital and lower earnings for women compared with men ( Blau and Kahn, 2007 ; Mincer and Polachek, 1974 ). Nonetheless, the association of work experience and income is more complex. Regarding the wages of men and women the influence of occupation itself also needs to be considered ( Lips, 2013 ). In the paper of Polachek (1981) different occupations over the careers of men and women were explained by different labor force participation over lifetime. Referring to the human capital model, it is argued that women more likely expect discontinuous employment. Therefore, women choose occupations with fewer penalties for interruptions ( Polachek, 1981 ). However, it should be questioned if working in specific occupations can be defined as a simple choice ( Lips, 2013 ). Besides, part-time employment is found to be more frequent among women, which ultimately leads to few working hours and hence low earnings ( Botsch, 2015 ; Ponthieux and Meurs, 2015 ; Boll et al., 2017 ). Though different working hours cannot be defined as a simple choice either ( Lips, 2013 ).

Earlier criticism about the human capital model discussed that the wage differences of men and women cannot only be explained by the qualification and the labor market experience ( Grybaitė, 2006 ; Lips, 2013 ). Another theoretical approach explaining the GPG refers to labor market discriminations, which effect occupations and wages ( Boll et al., 2017 ; Grybaitė, 2006 ). On the one hand, occupational sex segregation can be associated with income differences of men and women. The different occupational allocation in the labor market of men and women are defined as allocative discrimination ( Petersen and Morgan, 1995 ). In addition, occupations in female-dominated sectors are mostly characterized by low-wages compared to more male-dominated occupations ( Brynin and Perales, 2016 ). On the other hand, even with equal occupational positions and skill requirements women mostly earn less than men, this refers to the valuative discrimination ( Petersen and Morgan, 1995 ). Even within female-dominated jobs a certain discrimination exists, with men being paid more than women for the same occupation. Additionally, employment sectors with a large number of female workers are more likely to be associated with less prestige and lower earnings ( Lips, 2013 ). Achatz et al. (2005) analyzed the GPG with an employer-employee database in Germany. The authors examined the discrimination in the allocation of jobs, differences in productivity-, and firm-related characteristics. They found out that in occupational groups within companies, the wages decreased with a higher share of women in a group. Additionally, a higher proportion of women in a groups resulted in a higher wage loss for women than for men ( Achatz et al., 2005 ).

Although relevant criticism of the human capital model exists, its determinants are still found to be important in explaining the wage differences of men and women ( Boll et al., 2017 ). Nonetheless, income differences of men and women can still be found even with the same investments in human capital. The reason for this could be the occupational discrimination of women ( Brynin and Perales, 2016 ; Achatz et al., 2005 ; Lips, 2013 ). Therefore, the occupational positions can be associated as a relevant factor of the GPG.

1.2.2 Life Course Approach

Besides economic theories, there are other theoretical approaches of explaining the GPG. One of them focusses on the accumulation of disadvantages over the life course: the ‘cumulative advantage/disadvantage theory’ by Dannefer (2003) . It also involves social inequalities which can expand over time. The employment histories of men and women evolve over their working lives and during different career stages, advantages and disadvantages can accumulate. First, this life course perspective considers and underlines the dynamic approach of how factors shape each individual life course. Secondly, it can contribute to explain the different income trajectories of men and women over their working lives ( Doren and Lin, 2019 ; Dannefer, 2003 ; Härkönen et al., 2016 ; Manzoni et al., 2014 ; Barone and Schizzerotto, 2011 ).

The importance of the life course perspective was underlined by some earlier studies. They demonstrated that certain conditions in adolescence or early work-life affected future careers of men and women. Visser et al. (2016) found evidence for an accumulation of disadvantages in the labor market over working life, in particular for the lower educated. The cohort study SHARE had assessed economic and social changes over the life course in numerous European countries in several publications ( Börsch-Supan et al., 2013 ). Overall, education and vocational training, occupational positions and income illustrate parts of the social structure which in turn can demonstrate gender inequality in the labor market ( Boll and Leppin, 2015 ; Hasselhorn, 2020 ; Du Prel et al., 2019 ). Moreover, family events and labor market processes repeatedly affect one another over the life course. The work-family trajectories have consequences on employment outcomes such as earnings ( Aisenbrey and Fasang, 2017 ; Jalovaara and Fasang, 2019 ). Furthermore, the income differences of men and women are not steady but tend to be lower at the beginning of employment and increase with age ( Goldin, 2014 ; Eurostat, 2021a ). Therefore, careers should not be analyzed in a single snapshot, but with a more appropriate life course approach that takes into account factors that influences the wages of men and women over time.

1.3 Aim and Hypotheses

The aim of the present study is to examine income trajectories and to investigate the income differences of men and women over their life course. We are interested in how human capital determinants, occupational positions and the accumulation of disadvantages over time contribute to the explanation of the GPG from a life course perspective.

Focusing on older German employees, our study includes 24 years of their careers and considers possible cumulative disadvantages of women in the labor market compared to those of men. In contrast to Polachek (1981) , who analyzed the GPG as a unit over lifetime, we used a life course approach in regard to the theory of cumulative disadvantages of Dannefer (2003) . Accordingly, we analyze explaining factors of the GPG not only in a single snapshot but over the working careers of men and women. Life course data based on register data and characteristics of employment biographies with information on a daily basis are two additional important and valuable advantages of our study. Existing studies rarely have this information in the form of life course data and when they do, the data is either self-reported and retrospective including possible recall bias, or based on register data which was only collected on a yearly basis. We expect to find differences in the income of men and women over a period of time with overall higher, and more increasing earnings of men than of women.

Hypothesis 1 (H1): The differences of income trajectories throughout working life is expected to demonstrate more income over time among men than among women.

Education and vocational training, and work experience are human capital determinants. They have influence on the earnings of men and women. Although previous research estimated additional important factors contributing to the GPG, human capital capabilities continue to be relevant in explaining the wage differences of men and women ( Blau and Kahn, 2007 ; Boll et al., 2017 ). In our life course approach, we control for human capital determinants due to the information about education and vocational training, and work experience via the amount of working time (full-/part-time) for each year. We expect to find a strong influence of both determinants on the wages of men and women in Germany.

Hypothesis 2 (H2): The income differences between men and women can be explained by determinants of the human capital model.

Previous research found out that factors such as occupational status had an impact on the income differences of men and women ( Blau and Kahn, 2007 ; Boll et al., 2017 ). For a better understanding and explanation of the GPG, gender differences regarding occupational positions must be included to human capital determinants ( Boll et al., 2017 ). We assume that men and women can be found in different occupations, measured via occupational status, and these explain a substantial part of the wage differences between men and women.

Hypothesis 3 (H3): The occupational status of men and women can contribute to the explanation of the GPG.

The life-course approach acknowledges time as an important influence on the wages of men and women. Income differences of men and women can change over time and career stages, while the GPG was found to be lower at the beginning of the employment career and widened with age ( Goldin, 2014 ). Hence, the earning differences between men and women tend to be higher for older employees ( Eurostat, 2021a ; Federal Statistical Office, 2016 ). To account for the influence of age, we additionally included the age of each person in our analysis. Another factor that changes over time and contribute to explain the GPG is part-time work. In general, part-time work result in a disadvantage in pay compared to full-time employment ( Ponthieux and Meurs, 2015 ). However, explanations of the GPG due to different amount of part-time work need to include a special form of part-time work: marginal work. Marginal employment conditions are characterized by low wages and high job insecurities. Also discontinuous employment due to unemployment are characterized by job insecurities and affect the low-paid sector – therefore mainly women ( Botsch, 2015 ). Besides the human capital determinants and occupational positions as important factors explaining the GPG, the region of employment influences the wages of men and women and can also change over the career stages. Evidence from the Federal Statistical Office of Germany in 2014 noticed a divergence of the GPG trend in the formerly separated parts of Germany. The GPG among employees was wider in the Western part (24%) compared to the Eastern part of Germany, where it was found to be 9% ( Federal Statistical Office, 2016 ). Therefore, to examine income differences, the amount of less advantaged employment such as marginal work or periods of unemployment throughout the careers of men and women needs to be considered, as well as the region of employment and the age of a person.

Hypothesis 4 (H4): Factors of the living environment such as regional factors, and social disadvantage work conditions such as marginal work or unemployment, contribute to the income difference between men and women.

Our study about the GPG in Germany adds to earlier research in different ways. First, the accumulation of inequalities over the life course of men and women is known, but only few studies exist that focus on income through life course approach. We can analyze factors that influence the GPG over the careers of men and women due to the availability of social security data with daily information of each person. Besides the wages of men and women, the data additionally contains time-varying information about occupational status, working time and unemployment breaks. Therefore, we use longitudinal data of the German baby-boomers which allow us to measure changes of factors explaining the GPG over time. Second, a relevant contribution of our study is that we can consider different factors contributing to the explanation of the GPG through a life course perspective. The few studies focusing on the GPG over life course included either only determinants of the human capital model ( Joshi et al., 2020 ) or factors of occupational careers ( Moore, 2018 ). Some research included both aspects but had other disadvantages, such as Monti et al. (2020) , who could not analyze temporal evolution of the GPG with the data available. Moreover, previous research on the GPG in Germany could not trace vertical occupational segregation due to missing information of part-time workers, included only data of West Germany and used merely accumulated earnings over time ( Boll et al., 2017 ). Nonetheless, previous research demonstrated the need of analyzing the GPG via life course approach with which the accumulation of advantages and disadvantages for both, men and women, can be considered. Third, due to the usage of a multilevel framework we can examine income trajectories simultaneously at an individual and at a time-related level. Moreover, the influences of time-invariant and time-varying factors can be analyzed regarding differences in earnings of men and women. Hence, the multilevel approach examines income changes between and also within individuals. Furthermore, it acknowledges the importance of the life course perspective with including time as a factor in the model. A recent study also used growth curve modelling to explain gender inequality in the US. However, gender inequality measured through gender earnings was analyzed only across education and race without considering other variables explaining the GPG ( Doren and Lin, 2019 ). To our knowledge, there exists no research on the GPG that covers several essential determinants, hence we aim to fill those research gaps with our study.

2 Materials and Methods

The data were obtained from the cohort study lidA (living at work). The lidA sample includes two cohorts of employees (born in 1959 and in 1965) and was drawn randomly from social security data. LidA combines two major sources of information – register data of social insurance and questionnaire data derived from a survey. The survey was conducted in two waves, 2011 (t 0 ) and 2014 (t 1 ) ( Hasselhorn et al., 2014 ). The ethics commission of the University of Wuppertal approved the study.

In Germany, the social insurance system assists people in case of an emergency such as unemployment, illness, retirement, or nursing care. Employees have to make a contribution to the system depending on their income – except of civil servants or self-employed ( Federal Agency for Civic Education, 2021 ). In our analyses, we included men and women in Germany who participated in the baseline (2011) and in the follow-up (2014), were employed during both waves and subjected to social security contributions. We only included persons who agreed via written consent to the linkage of the survey data to their social security data. Thus, our sample for analysis included 3,338 individuals ( Figure 1 ).

www.frontiersin.org

FIGURE 1 . Decision tree – inclusion and exclusion criteria in the sample for analysis.

2.2 Measurements

The social security data of the Institute for Employment Research of the German Federal Employment Agency is based on employers’ reports. The so-called “Integrated Employment Biographies” (IEB) or register data comprises information about individual employment; that is, type of employment, occupational status, episodes of unemployment and income with information about age, gender and education and vocational training. The IEB data are retrieved from employers’ yearly reports submitted to the social security authority ( Hasselhorn et al., 2014 ). The information of the register data was available on a daily basis and contained yearly information from 1993 to 2017 for each person. However, the IEB data contain missing details, especially regarding information that is not directly relevant for social security data and therefore, not of the highest priority for employers’ reports. This is particularly true for data on gender and education and vocational training. As our sample participants consented to the linkage of IEB with questionnaire data, we were able to impute the missing information on these variables with the help of the survey data. All time-varying information in the IEB is coded to the day. Our data have a multilevel structure with time of measurements (Level 1) being nested within individuals (Level 2) and defined as follows.

2.2.1 Level 1 Variables

In our analysis the variable time was based on information about the year of measurement. The starting point represents 1993 and was coded with zero. The outcome variable income was calculated from the IEB data as nominal wages in Euros (€). As time-varying variable, it can be defined as the average daily income per year of each person whose work contributes to social security and/or marginal employment. Information about the work experience due to working time was available for jobs that require social security contribution. To draw this information from the IEB data, the time-varying variable working time was computed with three different types: full- and part-time, part-time, and full-time. The data on occupational status were based on the International Standard of Classification of Occupations 2008 (ISCO-08). This time-varying variable contained information on the occupational status of each job that a person has held over the years. For the multilevel analysis, ISCO-08 was transformed from the German classification KldB 2010 (classification of occupations 2010) of the register data. ISCO-08 is structured according to the skill level and specialization of jobs, which are grouped into four hierarchical levels. Occupational status in our study was defined by the 10 major groups (level one of the classifications ISCO-08), without the group of armed forces who did not appear in our data. Therefore, the nine groups were analyzed: elementary occupations; plant and machine operators and assemblers; craft and related trades workers; skilled agricultural, forestry and fishery workers; services and sales workers; clerical support workers; technicians and associate professionals; professionals; and managers ( International Labour Office, 2012 ). Moreover, information about the number of episodes of marginal work could also be drawn from the register data. Marginal work was defined due to having at least one marginal employment per year. The time periods (episodes) of every marginal employment were counted and added up yearly. Furthermore, the duration of unemployment as time-varying variable was calculated due to information of the register data about the days of unemployment per year. In the register data unemployment is defined as being unemployed or unable to work for up to 42 days, excluding those with sickness absence benefits or disability pensions. The IEB data also provided information on the region of employment, which represents the area in which a company is located (East Germany and West Germany). This time-varying variable was available for each person over the years. A description of the Level 1 characteristics of our sample is provided in Table 2 using the last available information (2017) from the IEB data.

2.2.2 Level 2 Variables

Information about the time-invariant variable education and vocational training was assessed from the survey data in 2011 (baseline). Education and vocational achievements of the sample were grouped in: low, intermediate and high education and vocational training (see Supplementary Table S1 ). The time-invariant variable gender had missing values in the register data. Therefore, we imputed the missing data using information of the survey data. The variable was coded 0 = female and 1 = male. Also based on the survey data, we included the time-invariant variable year of birth with measurements of 1959 and 1965 in the analysis. The characteristics of the Level 2 variables are displayed in Table 1 .

www.frontiersin.org

TABLE 1 . Characteristics of the Level 2 variables a for men (n = 1,552) and women (n = 1,786).

2.3 Statistical Analysis

The characteristics of our sample are displayed in Table 1 and Table 2 . Statistical analyses were performed using either Cramer’s V or by unpaired two sample t -test for numeric variables. Regarding the multilevel analysis, we used a so-called growth curve analysis. It demonstrates a multilevel approach for longitudinal data that model growth or decline over time. For this purpose, all daily information in the IEB were transformed into data on a yearly basis. Level 1 (year of measurements) represents the intraindividual change with time-varying variables. Interindividual changes are determined with time-invariant variables on Level 2 (individuals). Therefore, time of measurements predictors was nested within individuals. We applied a random intercept and slope model, which assumed variations in intercept and slope of individuals over time ( Singer and Willett, 2003 ; Rabe-Hesketh and Skrondal, 2012 ; Hosoya et al., 2014 ). Besides the Level 1 and Level 2 predictors, the cross-level interaction of gender*time interaction was constituted to analyze differences in income slopes of men and women over time ( Rabe-Hesketh and Skrondal, 2012 ).

www.frontiersin.org

TABLE 2 . Characteristics of Level 1 variables a for men (n = 1,552) and women (n = 1,786).

Level 1 of the two-level growth model is presented below ( Eq. (1) ). y i j measures the income trajectory y for individual i at time j . True initial income for each person is represented with β 0 i . The slope of the individual change trajectory demonstrates β i j . T I M E i j stands for the measure of assessment at time j for individual i (Level 1 predictor). The residual or random error, specific to time and the individual is demonstrated by ε i j .

Eq. 2 and 3 represent the submodels of the Level 2. Eq. 2 defines the intercept γ 00 for individual i with the intercept of z i (illustrating a Level 2 predictor) and residual in the intercept v 0 i . The slope at Level 2 is represented in Eq. 3 with γ 10 and the slope error v 1 i . The effect γ 11 provides information on the extent to which the effect of the Level 1 predictor ( T I M E i j ) varies depending on the Level 2 predictor ( z i ).

To test our hypotheses, we calculated the influence of different variables with adjusting various predictors stepwise into the multilevel analysis. First, we estimated an unconditional means model which describes the outcome variation only and not its change over time (model 1). The next preliminary step was calculating the intraclass correlation coefficient (ICC) of this model 1. It identifies and partitions the two components: within- and between-person variance. The ICC estimates the proportion of total variation of the outcome y that lies between persons ( Singer and Willett, 2003 ). In the next model (model 2), we calculated an unconditional growth curve model which included time as predictor on Level 1. In model 3, the GCA was controlled for gender and time as well as the interaction of both variables. Model 4 was additionally adjusted for human capital determinant: education and vocational training, and working time. The GCA of model 5 was controlled for occupational status. The last model included year of birth, number of episodes of marginal work, duration of unemployment and region of employment (model 6 – fully adjusted model).

In Table 5 , the indices of the Akaike’s Information Criterion (AIC) were used to compare models and explore the best model fit ( Singer and Willett, 2003 ; Rabe-Hesketh and Skrondal, 2012 ). The statistical analyses were performed with IBM SPSS 25.

3.1 Descriptive

Characteristics of Level 2 variables stratified by gender are displayed in Table 1 . 1,552 men and 1,786 women were included in the analyses. It is observed that women significantly differ from men in education and vocational training. Women were less likely than men to have both low and high levels of education and vocational training.

The characteristics of Level 1 variable are represented in Table 2 . Men and women differ significantly in their occupational positions. Also, men had a higher average daily income than women. Part-time jobs are more likely among women as compared to men, who are more likely to be represented in full-time jobs. Moreover, the numbers of episodes of marginal work differ significantly between men and women.

Figure 2 displays the income trajectories over the observation period (1993–2017) among men and women. In 24 years, average daily income per year increased for both. However, men have a higher average income over their life course than women. Over time, a steeper growth of the average daily income per year can be observed for men, compared to the income development of women.

www.frontiersin.org

FIGURE 2 . Income trajectories of men and women.

3.2 Growth Curve Analysis

Results of the multilevel analyses with average daily income per year as dependent variable concerning H1 are presented in Table 3 . The ICC of the unconditional means model (model 1) demonstrates that 74% of the total variability in income can be attributed to differences between persons and 26% to the differences within persons. Adding time as a predictor in the multilevel analysis (model 2), the variance components on Level 1 become smaller. Concluding that time accounts for 68% (from 607.34 to 197.12) of the within-person variance in average income. On Level 2, time explains 40% of the variance between persons (interindividual). However, there can be still found significant unexplained results in both levels which suggests that predictors on both levels should be further included. The GCA in model 3 was adjusted for gender (with women as reference group) and the interaction gender*time. The results show a significant effect of gender on the average income over time. The starting place (intercept) lies at 41.74€ with an incremental growth per year of 1.76€. However, regarding women as reference group, men have a higher average income. The significant interaction term also indicates different income development of men and women over time – with men having higher average income trajectory than women. As expected, no relevant change can be found in the within-person variance due to the adding of the Level 2 variable: gender. The variance on Level 2, however, become less concluding that gender accounts for 26% of the variance between persons. Overall, we can verify H1 with these results.

www.frontiersin.org

TABLE 3 . Growth curve models 1 to 3: Estimates of average daily income per year.

Results of the GCA with average daily income per year as the dependent variable controlled by determinants of the human capital model are presented in Table 4 (model 4). In addition to the multilevel analysis of model 3, model 4 is also adjusted for: education and vocational training, and working time. The results show that the average income is found to be significantly higher for full-time workers and higher educated. There is a social gradient for income regarding education and vocational training – with decreasing levels of education, the income also reduces. People who are working full-time have a higher average income than those who work part-time or full- and part-time. The effect of gender is found to be significant with less average income of women compared to men. Moreover, the income development of men and women over time is still significantly different, with more income growth over time for men than for women. The results of the variance components demonstrate that human capital determinants are explaining 16% of the variance within person and 25% of the variance between persons. However, on both levels there can be still found significant variance and additional variables need to be considered. Our hypothesis 2 can be partially confirmed.

www.frontiersin.org

TABLE 4 . Growth curve models 4 to 6: Estimates of average daily income per year.

Model 5 ( Table 4 ) embeds occupational status to the analysis to find out the contribution of the occupational positions on the earning differences of men and women. Significant differences in the daily average income for each occupational group can be identified. The reference group is represented with the highest occupational group ‘manager’. In nearly all other occupations, manager had the highest average income, except of ‘technicians and associate professionals’. Moreover, the effects of occupational status on income are significant for all ISCO groups except for professionals. However, compared to education and vocational training, occupational status trends are less clear, and a social gradient cannot be identified. The estimated of the fixed effect of gender persists and stays the same, concluding that the occupational position of a person could not influence the effect of gender on income. The increase of income over time can be still found to be significant higher for men than for women. Moreover, including the Level 1 variable, occupational position cannot explain a substantial part of the within-person variance. We can identify occupational positions as significant predictor of the income, but a relevant contribution to explain the GPG cannot be observed. Therefore, we cannot approve hypothesis 3.

The results of investigating the influence of factors of the living environment are presented in Table 4 (model 6). Those, who are born earlier (1959) are found to have a higher average daily income, compared to those born in 1965. Having at least one marginal employment per year influences the average daily income negatively, as does having more unemployed days. Furthermore, average income is influenced by the region of employment, being lower in East Germany than in West Germany. The estimate of gender become a little less, but the average income and the development of income over time still substantially differs between men and women. The factors of living environment account for 10% of the variance between persons. We can only partially accept hypothesis 4.

3.3 Goodness of Fit

Table 5 displays the goodness of fit statistics for the different models of the GCA. The AIC is computed to find the best model fit. Considering the different indices of AIC, model 6 has the best fit.

www.frontiersin.org

TABLE 5 . Goodness-of-fit statistics of the GCA.

4 Discussion

This study aimed to examine the income differences of men and women over their life course. We investigated how different factors can explain the GPG over time. Even after extensive control for human capital determinants, occupational factors and various factors of the living environment, the effect of gender on the average daily income persisted. Moreover, the average income development was found to be higher for men compared to women.

The accumulation of inequalities over time can be seen in the difference between men’s and women’s wages. Over the period of 24 years, our results showed that the income development of men increased more compared to women – the GPG widened with time. Due to the availability of life course data, we could consider cumulative disadvantages regarding the earnings of men and women. Moreover, the results of the variance componence also showed the importance of including time to explain the GPG ( Table 3 , model 2). Therefore, we can verify our first hypothesis. The steeper incline of income for men compared to women over time substantiates the presence of GPG in Germany. Goldin (2014) also found a small GPG when people enter the labor market and a widening gap with age. Our findings are also in line with information from the Federal Statistical Office (2016) and Eurostat (2021a) who used representative data and not use cohort specific data of the German working population.

The second hypothesis assumed that human capital determinants (education and work experience) can explain the GPG. The effects of education and vocational training on daily average income significantly differed in our results ( Table 4 , model 4). Findings of Bovens and Wille (2017) also demonstrated that the level of a person’s education determines the income level. Our results also support the previous finding, that education is most often a requirement for the achievement of a certain desired financial situation ( Du Prel et al., 2019 ). Our results also showed that the average income significantly differed considering working time. Full-time workers had higher average income, while men were more likely to work full-time compared to women. Earlier research also showed that part-time work was more frequent among women than among men ( Boll and Leppin, 2015 ; Matteazzi et al., 2018 ; Eurostat, 2021a ). After adjusting for human capital determinants, the unexplained variance was still substantial and the effect of gender remained significant. Hence, H2 can only partially be accepted.

In our third hypothesis, we assumed that the gender differences in occupational position can explain the GPG. We demonstrated that the average income differed according to the occupational status of a person. This is in line with previous findings of Blau and Kahn (2001) who assumed occupation to be an important factor of the financial status of a person. After controlling for occupational status, the effect of gender could still be found to be significant. We cannot accept H3 and therefore cannot confirm results of earlier studies ( Blau and Kahn, 2007 ; Boll et al., 2017 ). In contrast to the results of education and vocational training, we did not observe a clear social gradient of occupational status and income in our analyses. One explanation could be the classification of the occupational status. The ISCO classification is structured hierarchically on four levels. The construction is based on skill level and specialization. In our study, we used the major group structure (level one) with 10 different occupational groups. Using ISCO at level one (major groups) cannot be interpreted as a strict hierarchical order of occupations; instead, it can be considered more of a summary information on occupational status regarding skill level. Moreover, we were only able to generate the major groups of the register data and therefore cannot provide more detailed information about the occupational status. However, ISCO is applied in our study for the purpose of international comparability ( International Labour Office, 2012 ).

The accumulation of disadvantages over time could also be found in our results after controlling for factors such as unemployment or marginal employment. Having (at least one) marginal employment per year influenced the income negatively. We found that discontinuities in employment and interruptions such as unemployment also had a significant negative effect. Average income decreased when the number of days per year of unemployment increased. Furthermore, controlling for the region of employment, people in East Germany had lower daily average income compared to those in West Germany. Regarding the difference between men and women, previous findings also suggested a wider GPG in West Germany than in East Germany ( Federal Statistical Office, 2016 ). However, the GPG in West and East Germany should be compared with caution due to different societal models in the past. Moreover, different labour market characteristics and different infrastructure of childcare facilities lead to a lower GPG in East Germany than in West Germany ( Federal Ministry for Family Affairs, Senior Citizens, Women and Youth, 2020 ). The year of birth was included to eliminate cohort effects, and it was found to influence average income. Men and women born earlier (1959) had higher income than those born in 1965. The fact that they are older and have worked longer in the labor market could be an explanation. The significant effects of gender on the average income and the income trajectories remained after adjusting for these factors. Therefore, hypothesis 4 can only be partially confirmed.

4.1 Strengths and Limitations

Our study has limitations concerning the generalizability of our results due to the database. Our sample includes employees of two age groups (1959 and 1965) in Germany, who are subjected to social security. Thus, the generalizability or extension of the findings to self-employed people, civil servants and other age groups may be limited. The GPG differs considerably between the EU members. The GPG in Germany is one of the widest in the EU, with 19.2% in 2019. Netherlands and Sweden are two EU countries with similar employment rates, but still have lower GPGs with 14.6 and 11.8% ( Eurostat, 2021a ). Efforts to promote gender equality in politics in Germany are limited compared to other EU members. Women are still underrepresented, not only in the political but also in the economic area. Moreover family policy needs to further support full-time employment of women and working mothers ( Andersson et al., 2014 ; Botsch, 2015 ). Therefore, the transfer of our results to other countries should be made with caution. There are some other limitations regarding the IEB data. Information about occupational careers exist from the beginning (1975), but only for persons born in West Germany. Information about people born in East Germany was not available for the period before 1993. Hence, to counteract the systematic bias, we defined 1993 as a cut-off point, when people were either 28 or 34 years old. Additionally, we adjusted our analyses for the region of employment (East/West Germany). Furthermore, information about the marginal work and duration of unemployment were only available from 1999 onwards. Due to the composition of the IEB data, we could not include people who were unwell for long periods of time. Only persons who were unable to work for less than 42 days were included in the data. Regarding the income development of women in our study, Figure 2 shows a decrease between 1997 and 1999. Being in their thirties (32–40 years) and having to raise children at that time can be one possible explanation. Regarding family formation, in 1993 the average age of a mother at birth was 28.4 years ( Federal Statistical Office, 2020 ). At the beginning of our analysis (1993) the average age of both cohorts in the study (28 years; 34 years) is similar to the average age of a mother during that time – especially for the younger cohort. However, our data do not cover information about persons on parental leave or homemakers. Due to the lack of information in the IEB data, implications of family life contributing to a difference in pay for women cannot be included in our analysis. Furthermore, Joshi et al. (2020) could not find a GPG only for parents but also for men and women without children. Therefore, the issue of wage differences between men and women is relevant either way.

Besides these restrictions, our study exhibits several strengths. The study population is highly representative for German employees subject to social insurance contributions, born in 1959 and 1965 and is, therefore, characterized by a high external validity ( Schröder et al., 2013 ). Moreover, the IEB data itself and the nature of the data that the IEB provides, are one important strength of this study. The register data is not subject to possible recall bias. This is a relevant advantage compared to most previous studies that used self-reported data. In addition, the availability of information on a daily basis regarding many variables can be seen as another strength of the study. As a result, income trajectories could be calculated more precisely, compared to many previous studies. Furthermore, in Germany, income is used to calculate the amount of social benefit accruing to each person and therefore represents highly valid information. A further major advantage of our study is represented in our long observation period of 24 years. Only a few studies have applied the life course approach to examine the complexity of the GPG. Our life course data contain various information about employment characteristics which are relevant for the GPG and of high data quality.

Our results showed, even after controlling for relevant factors, that the GPG still persisted. There exist some explanations of the GPG regarding different behaviors of men and women in wage negotiations, which further influence different income developments ( Boll and Leppin, 2015 ). Also, structural disadvantages in the labor market can be a factor explaining the GPG. Individual behavior and labor market structures are not represented in our register data. We can only extract information that is relevant for social security contribution. Nonetheless, previous research of Blau and Kahn (2017) found a larger and more slowly decreasing GPG in the US at the top compared to other levels of the wage distribution. This ‘glass ceiling effect’ describes the reduced career opportunities of women compared to men due to frequent denial of access to leadership positions. Consequently, gender inequality can be found to be greater at the top of the wage distribution. Among European countries, previous studies have found this “glass ceiling effect” in Germany as well ( Arulampalam et al., 2005 ; Boll and Leppin, 2015 ; Huffman et al., 2017 ). However, recent results of Boll et al. (2017) could not confirm the glass ceiling effect in West Germany, thus further research is needed.

5 Conclusion

The gender pay inequalities in the German labor market from a life course perspective exist. Our results demonstrated that human capital determinants continue to be important in explaining the GPG over time. Furthermore, factors of working disadvantages such as marginal work or unemployment are important when trying to explain the income differences of men and women. For further research the availability of more work data over the life course with matching individual data would help to understand the GPG even better.

Data Availability Statement

The datasets presented in this article are not readily available because the study data contain social security information. Due to legal regulations in Germany, it is not permitted to share data with social security information. Requests to access the datasets should be directed to [email protected] .

Ethics Statement

The studies involving human participants were reviewed and approved by the ethics commission of the University of Wuppertal. The patients/participants provided their written informed consent to participate in this study.

Author Contributions

LT substantially contributed to the statistical analysis and interpretation of the data, and wrote the manuscript. HB discussed the results and provided critical comments on the manuscript. RP contributed to the obtaining of the funding, interpreting the data, and critically revised the manuscript for important aspects. All authors read and approved the final manuscript.

This work was supported by the German Research Foundation (DFG), grant number 393153877.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

We gratefully acknowledge the support of two staff members of the University Ulm. We would like to thank Gaurav Berry for his support of the data preparation and Diego Montano for his feedback on the statistical analysis.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fsoc.2021.815376/full#supplementary-material .

Achatz, J., Gartner, H., and Glück, T. (2005). Bonus Oder Bias? Koelner Z.Soziol.u.Soz.Psychol 57, 466–493. doi:10.1007/s11577-005-0185-6

CrossRef Full Text | Google Scholar

Aisenbrey, S., and Bruckner, H. (2008). Occupational Aspirations and the Gender Gap in Wages. Eur. Sociological Rev. 24, 633–649. doi:10.1093/esr/jcn024

Aisenbrey, S., and Fasang, A. (2017). The Interplay of Work and Family Trajectories over the Life Course: Germany and the United States in Comparison. Am. J. Sociol. 122, 1448–1484. doi:10.1086/691128

Andersson, G., Kreyenfeld, M., and Mika, T. (2014). Welfare State Context, Female Labour-Market Attachment and Childbearing in Germany and Denmark. J. Pop Res. 31, 287–316. doi:10.1007/s12546-014-9135-3

Arulampalam, W., Booth, A. L., and Bryan, M. L. (2005). Is There a Glass Ceiling over Europe? Exploring the Gender Pay gap across the Wages Distribution . Colchester, EX: ISER Working Paper Series , 25.

Google Scholar

Azmat, G., Güell, M., and Manning, A. (2006). Gender Gaps in Unemployment Rates in OECD Countries. J. Labor Econ. 24, 1–37. doi:10.1086/497817

Barone, C., and Schizzerotto, A. (2011). Introduction. Eur. Societies 13, 331–345. doi:10.1080/14616696.2011.568248

Blau, F. D., and Kahn, L. M. (2007). The Gender Pay Gap. AMP 21, 7–23. doi:10.5465/amp.2007.24286161

Blau, F. D., and Kahn, L. M. (2017). The Gender Wage Gap: Extent, Trends, and Explanations. J. Econ. Lit. 55, 789–865. doi:10.1257/jel.20160995

Blau, F., and Kahn, L. (2001). Understanding International Differences in the Gender Pay Gap . Ithaca, NY: NBER Working Paper 8200 . Available at: https://www.nber.org/papers/w8200 (Accessed November 30, 2021).

Boll, C., Jahn, M., and Lagemann, A. (2017). The Gender Lifetime Earnings gap: Exploring Gendered Pay from the Life Course Perspective . Hamburg, Germany: HWWI Research Paper , 179.

Boll, C., and Leppin, J. S. (2015). Die geschlechtsspezifische Lohnlücke in Deutschland: Umfang, Ursachen und Interpretation. Wirtschaftsdienst 95, 249–254. doi:10.1007/s10273-015-1814-y

Börsch-Supan, A., Brandt, M., Hunkler, C., Kneip, T., Korbmacher, J., Malter, F., et al. (2013). Data Resource Profile: the Survey of Health, Ageing and Retirement in Europe (SHARE). Int. J. Epidemiol. 42, 992–1001. doi:10.1093/ije/dyt088

Botsch, E. (2015). The Policy on Gender Equality in Germany. Available at: https://www.europarl.europa.eu/RegData/etudes/IDAN/2015/510025/IPOL_IDA(2015)510025_EN.pdf (Accessed November 25, 2020).

Bovens, M., and Wille, A. (2017). Education as a Cleavage . Oxford University Press .

Broughton, A., Green, M., Rickard, C., Swift, S., Eichhorst, W., Tobsch, V., et al. (2016). Precarious Employment in Europe: Patterns, Trends and Policy Strategy . Europarl . Available at: https://www.europarl.europa.eu/RegData/etudes/STUD/2016/587285/IPOL_STU(2016)587285_EN.pdf .

Brynin, M., and Perales, F. (2016). Gender Wage Inequality: The De-gendering of the Occupational Structure. Eur. Sociol. Rev. 32, 162–174. doi:10.1093/esr/jcv092

Dannefer, D. (2003). Cumulative Advantage/disadvantage and the Life Course: Cross-Fertilizing Age and Social Science Theory. J. Gerontol. B Psychol. Sci. Soc. Sci. 58, S327–S337. doi:10.1093/geronb/58.6.s327

Doren, C., and Lin, K. Y. (2019). Diverging Trajectories or Parallel Pathways? an Intersectional and Life Course Approach to the Gender Earnings Gap by Race and Education. Socius 5, 237802311987381–23. doi:10.1177/2378023119873816

Du Prel, J. B., Schrettenbrunner, C., and Hasselhorn, H. M. (2019). Vertical and Horizontal Social Inequality and Motivation for Early Retirement. Z. Gerontol. Geriatr. 52, 3–13. doi:10.1007/s00391-018-1450-4

Eurostat (2021a). Statistics Explained: Gender Pay gap Statistics. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Gender_pay_gap_statistics (Accessed December 01, 2021).

Eurostat (2021b). Statistics Explained: Gender Statistics. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Gender_statistics#Earnings (Accessed November 30, 2021).

Federal Agency for Civic Education (2021). Sozialversicherung [Social Insurance]. Available at: https://www.bpb.de/nachschlagen/lexika/das-junge-politik-lexikon/321149/sozialversicherung (Accessed November 30, 2021).

Federal Ministry for Family Affairs, Senior Citizens, Women and Youth (2020). The Road to Equal Pay for Women and Men. Available at: https://www.bmfsfj.de/bmfsfj/meta/en/publications-en/the-road-to-equal-pay-for-women-and-men-161370 (Accessed December 01, 2021).

Federal Statistical Office (2020). Durchschnittliches Alter der Mutter bei der Geburt ihrer lebend geborenen Kinder: Deutschland, Jahre, Familienstand der Eltern [Average age of the mother at the birth of her children born alive: Germany, years, marital status of parents]. Available at: https://www-genesis.destatis.de/genesis/online (Accessed March 17, 2021).

Federal Statistical Office (2021). Three in Four Mothers in Germany Were in Employment in 2019. Available at: https://www.destatis.de/EN/Press/2021/03/PE21_N017_13.html (Accessed March 16, 2021).

Federal Statistical Office (2016). Unbereinigter Verdienstunterschied nach persönlichen Merkmalen im Jahr 2014 [Gender Pay Gap by personal characteristics in 2014 (unadjusted)]. Available at: https://www.destatis.de/DE/Themen/Arbeit/Verdienste/Verdienste-Verdienstunterschiede/Tabellen/gpg-persoenlich.html (Accessed March 16, 2020).

Goldin, C. (2014). A Grand Gender Convergence: Its Last Chapter. Am. Econ. Rev. 104, 1091–1119. doi:10.1257/aer.104.4.1091

Grybaitė, V. (2006). Analysis of Theoretical Approaches to Gender Pay gap. J. Business Econ. Manag. 7, 85–91. doi:10.3846/16111699.2006.9636127

Härkönen, J., Manzoni, A., and Bihagen, E. (2016). Gender Inequalities in Occupational Prestige across the Working Life: An Analysis of the Careers of West Germans and Swedes Born from the 1920s to the 1970s. Adv. Life course Res. 29, 41–51. doi:10.1016/j.alcr.2016.01.001

Hasselhorn, H. M., Peter, R., Rauch, A., Schröder, H., Swart, E., Bender, S., et al. (2014). Cohort Profile: the lidA Cohort Study-A German Cohort Study on Work, Age, Health and Work Participation. Int. J. Epidemiol. 43, 1736–49. doi:10.1093/ije/dyu021

PubMed Abstract | CrossRef Full Text | Google Scholar

Hasselhorn, H. M. (2020). “Social Inequality in the Transition from Work to Retirement,” in Handbook of Socioeconomic Determinants of Occupational Health . Editor T. Theorell (Cham: Springer International Publishing ), 1–26. doi:10.1007/978-3-030-05031-3_32-1

Hosoya, G., Koch, T., and Eid, M. (2014). Längsschnittdaten und Mehrebenenanalyse. Köln Z. Soziol 66, 189–218. doi:10.1007/s11577-014-0262-9

Huffman, M. L., King, J., and Reichelt, M. (2017). Equality for Whom? Organizational Policies and the Gender Gap across the German Earnings Distribution. ILR Rev. 70, 16–41. doi:10.1177/0019793916673974

International Labour Office (2012). International Standard Classification of Occupations: ISCO-08 . Geneva: International Labour Organization .

Jalovaara, M., and Fasang, A. E. (2019). Family Life Courses, Gender, and Mid-life Earnings. Eur. Sociol. Rev. 36, 159–178. doi:10.1093/esr/jcz057

Joshi, H., Bryson, A., Wilkinson, D., and Ward, K. (2020). The Gender gap in Wages over the Life Course: Evidence from a British Cohort Born in 1958. Gend. Work Organ. 28, 397–415. doi:10.1111/gwao.12580

Lips, H. M. (2013). The Gender Pay Gap: Challenging the Rationalizations. Perceived Equity, Discrimination, and the Limits of Human Capital Models. Sex Roles 68, 169–185. doi:10.1007/s11199-012-0165-z

Manzoni, A., Harkonen, J., and Mayer, K. U. (2014). Moving on? A Growth-Curve Analysis of Occupational Attainment and Career Progression Patterns in West Germany. Social Forces 92, 1285–1312. doi:10.1093/sf/sou002

Matteazzi, E., Pailhé, A., and Solaz, A. (2018). Part-time Employment, the Gender Wage gap and the Role of Wage-Setting Institutions: Evidence from 11 European Countries. Eur. J. Ind. Relations 24, 221–241. doi:10.1177/0959680117738857

Mincer, J., and Polachek, S. (1974). Family Investments in Human Capital: Earnings of Women. J. Polit. Economy 82, S76–S108. doi:10.1086/260293

Monti, H., Stinson, M., and Zehr, L. (2020). How Long Do Early Career Decisions Follow Women? the Impact of Employer History on the Gender Wage Gap. J. Labor Res. 41, 189–232. doi:10.1007/s12122-020-09300-9

Moore, T. S. (2018). Occupational Career Change and Gender Wage Inequality. Work and Occupations 45, 82–121. doi:10.1177/0730888417742691

OECD (2021). OECD Statistics. Available at: http://stats.oecd.org/ (Accessed March 16, 2021).

Petersen, T., and Morgan, L. A. (1995). Separate and Unequal: Occupation-Establishment Sex Segregation and the Gender Wage Gap. Am. J. Sociol. 101, 329–365. doi:10.1086/230727

Polachek, S. W. (1981). Occupational Self-Selection: A Human Capital Approach to Sex Differences in Occupational Structure. Rev. Econ. Stat. 63, 60. doi:10.2307/1924218

Ponthieux, S., and Meurs, D. (2015). “Gender Inequality,” in Handbook of Income Distribution: Volume 2 . Editors A. B. Atkinson, and F. Bourguignon (Burlington: Elsevier Science ), 981–1146. doi:10.1016/b978-0-444-59428-0.00013-8

Rabe-Hesketh, S., and Skrondal, A. (2012). Multilevel and Longitudinal Modeling Using Stata . 3rd ed.. College Station, Tex: Stata Press .

Radl, J. (2013). Labour Market Exit and Social Stratification in Western Europe: The Effects of Social Class and Gender on the Timing of Retirement. Eur. Sociological Rev. 29, 654–668. doi:10.1093/esr/jcs045

Sackmann, R. (2018). “Demographie als Herausforderung für die Soziologie,” in Handbuch Soziologie des Alter(n)s . Editors K. R. Schroeter, C. Vogel, and H. Künemund (Wiesbaden: Springer VS ), 1–23. doi:10.1007/978-3-658-09630-4_5-1

Schröder, H., Kersting, A., Gilberg, R., and Steinwede, J. (2013). Methodenbericht zur Haupterhebung lidA - leben in der Arbeit [Methodology Report of the main survey of lidA]. Available at: http://doku.iab.de/fdz/reporte/2013/MR_01-13.pdf (Accessed March 15, 2020).

Sierminska, E. M., Frick, J. R., and Grabka, M. M. (2010). Examining the Gender Wealth gap. Oxford Econ. Pap. 62, 669–690. doi:10.1093/oep/gpq007

Singer, J. D., and Willett, J. B. (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence . Oxford: Oxford Univ. Press .

Visser, M., Gesthuizen, M., Kraaykamp, G., and Wolbers, M. H. J. (2016). Inequality Among Older Workers in the Netherlands: A Life Course and Social Stratification Perspective on Early Retirement. Eur. Sociol. Rev. 32, 370–382. doi:10.1093/esr/jcw013

Keywords: employment biographies, gender inequality, income trajectories, LidA-study, growth curve analysis, life course perspective, trajectories of labor market factors

Citation: Toczek L, Bosma H and Peter R (2021) The Gender Pay Gap: Income Inequality Over Life Course – A Multilevel Analysis. Front. Sociol. 6:815376. doi: 10.3389/fsoc.2021.815376

Received: 15 November 2021; Accepted: 08 December 2021; Published: 23 December 2021.

Reviewed by:

Copyright © 2021 Toczek, Bosma and Peter. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Lisa Toczek, [email protected]

Read our research on: Israel | Internet & Technology | Science

Regions & Countries

Gender pay gap in u.s. hasn’t changed much in two decades.

The gender gap in pay has remained relatively stable in the United States over the past 20 years or so. In 2022, women earned an average of 82% of what men earned, according to a new Pew Research Center analysis of median hourly earnings of both full- and part-time workers. These results are similar to where the pay gap stood in 2002, when women earned 80% as much as men.

A chart showing that the Gender pay gap in the U.S. has not closed in recent years, but is narrower among young workers

As has long been the case, the wage gap is smaller for workers ages 25 to 34 than for all workers 16 and older. In 2022, women ages 25 to 34 earned an average of 92 cents for every dollar earned by a man in the same age group – an 8-cent gap. By comparison, the gender pay gap among workers of all ages that year was 18 cents.

While the gender pay gap has not changed much in the last two decades, it has narrowed considerably when looking at the longer term, both among all workers ages 16 and older and among those ages 25 to 34. The estimated 18-cent gender pay gap among all workers in 2022 was down from 35 cents in 1982. And the 8-cent gap among workers ages 25 to 34 in 2022 was down from a 26-cent gap four decades earlier.

The gender pay gap measures the difference in median hourly earnings between men and women who work full or part time in the United States. Pew Research Center’s estimate of the pay gap is based on an analysis of Current Population Survey (CPS) monthly outgoing rotation group files ( IPUMS ) from January 1982 to December 2022, combined to create annual files. To understand how we calculate the gender pay gap, read our 2013 post, “How Pew Research Center measured the gender pay gap.”

The COVID-19 outbreak affected data collection efforts by the U.S. government in its surveys, especially in 2020 and 2021, limiting in-person data collection and affecting response rates. It is possible that some measures of economic outcomes and how they vary across demographic groups are affected by these changes in data collection.

In addition to findings about the gender wage gap, this analysis includes information from a Pew Research Center survey about the perceived reasons for the pay gap, as well as the pressures and career goals of U.S. men and women. The survey was conducted among 5,098 adults and includes a subset of questions asked only for 2,048 adults who are employed part time or full time, from Oct. 10-16, 2022. Everyone who took part is a member of the Center’s American Trends Panel (ATP), an online survey panel that is recruited through national, random sampling of residential addresses. This way nearly all U.S. adults have a chance of selection. The survey is weighted to be representative of the U.S. adult population by gender, race, ethnicity, partisan affiliation, education and other categories. Read more about the ATP’s methodology .

Here are the questions used in this analysis, along with responses, and its methodology .

The  U.S. Census Bureau has also analyzed the gender pay gap, though its analysis looks only at full-time workers (as opposed to full- and part-time workers). In 2021, full-time, year-round working women earned 84% of what their male counterparts earned, on average, according to the Census Bureau’s most recent analysis.

Much of the gender pay gap has been explained by measurable factors such as educational attainment, occupational segregation and work experience. The narrowing of the gap over the long term is attributable in large part to gains women have made in each of these dimensions.

Related: The Enduring Grip of the Gender Pay Gap

Even though women have increased their presence in higher-paying jobs traditionally dominated by men, such as professional and managerial positions, women as a whole continue to be overrepresented in lower-paying occupations relative to their share of the workforce. This may contribute to gender differences in pay.

Other factors that are difficult to measure, including gender discrimination, may also contribute to the ongoing wage discrepancy.

Perceived reasons for the gender wage gap

A bar chart showing that Half of U.S. adults say women being treated differently by employers is a major reason for the gender wage gap

When asked about the factors that may play a role in the gender wage gap, half of U.S. adults point to women being treated differently by employers as a major reason, according to a Pew Research Center survey conducted in October 2022. Smaller shares point to women making different choices about how to balance work and family (42%) and working in jobs that pay less (34%).

There are some notable differences between men and women in views of what’s behind the gender wage gap. Women are much more likely than men (61% vs. 37%) to say a major reason for the gap is that employers treat women differently. And while 45% of women say a major factor is that women make different choices about how to balance work and family, men are slightly less likely to hold that view (40% say this).

Parents with children younger than 18 in the household are more likely than those who don’t have young kids at home (48% vs. 40%) to say a major reason for the pay gap is the choices that women make about how to balance family and work. On this question, differences by parental status are evident among both men and women.

Views about reasons for the gender wage gap also differ by party. About two-thirds of Democrats and Democratic-leaning independents (68%) say a major factor behind wage differences is that employers treat women differently, but far fewer Republicans and Republican leaners (30%) say the same. Conversely, Republicans are more likely than Democrats to say women’s choices about how to balance family and work (50% vs. 36%) and their tendency to work in jobs that pay less (39% vs. 30%) are major reasons why women earn less than men.

Democratic and Republican women are more likely than their male counterparts in the same party to say a major reason for the gender wage gap is that employers treat women differently. About three-quarters of Democratic women (76%) say this, compared with 59% of Democratic men. And while 43% of Republican women say unequal treatment by employers is a major reason for the gender wage gap, just 18% of GOP men share that view.

Pressures facing working women and men

Family caregiving responsibilities bring different pressures for working women and men, and research has shown that being a mother can reduce women’s earnings , while fatherhood can increase men’s earnings .

A chart showing that about two-thirds of U.S. working mothers feel a great deal of pressure to focus on responsibilities at home

Employed women and men are about equally likely to say they feel a great deal of pressure to support their family financially and to be successful in their jobs and careers, according to the Center’s October survey. But women, and particularly working mothers, are more likely than men to say they feel a great deal of pressure to focus on responsibilities at home.

About half of employed women (48%) report feeling a great deal of pressure to focus on their responsibilities at home, compared with 35% of employed men. Among working mothers with children younger than 18 in the household, two-thirds (67%) say the same, compared with 45% of working dads.

When it comes to supporting their family financially, similar shares of working moms and dads (57% vs. 62%) report they feel a great deal of pressure, but this is driven mainly by the large share of unmarried working mothers who say they feel a great deal of pressure in this regard (77%). Among those who are married, working dads are far more likely than working moms (60% vs. 43%) to say they feel a great deal of pressure to support their family financially. (There were not enough unmarried working fathers in the sample to analyze separately.)

About four-in-ten working parents say they feel a great deal of pressure to be successful at their job or career. These findings don’t differ by gender.

Gender differences in job roles, aspirations

A bar chart showing that women in the U.S. are more likely than men to say they're not the boss at their job - and don't want to be in the future

Overall, a quarter of employed U.S. adults say they are currently the boss or one of the top managers where they work, according to the Center’s survey. Another 33% say they are not currently the boss but would like to be in the future, while 41% are not and do not aspire to be the boss or one of the top managers.

Men are more likely than women to be a boss or a top manager where they work (28% vs. 21%). This is especially the case among employed fathers, 35% of whom say they are the boss or one of the top managers where they work. (The varying attitudes between fathers and men without children at least partly reflect differences in marital status and educational attainment between the two groups.)

In addition to being less likely than men to say they are currently the boss or a top manager at work, women are also more likely to say they wouldn’t want to be in this type of position in the future. More than four-in-ten employed women (46%) say this, compared with 37% of men. Similar shares of men (35%) and women (31%) say they are not currently the boss but would like to be one day. These patterns are similar among parents.

Note: This is an update of a post originally published on March 22, 2019. Anna Brown and former Pew Research Center writer/editor Amanda Barroso contributed to an earlier version of this analysis. Here are the questions used in this analysis, along with responses, and its methodology .

research paper on gender pay

What is the gender wage gap in your metropolitan area? Find out with our pay gap calculator

research paper on gender pay

Sign up for our weekly newsletter

Fresh data delivered Saturday mornings

In a Growing Share of U.S. Marriages, Husbands and Wives Earn About the Same

When negotiating starting salaries, most u.s. women and men don’t ask for higher pay, the enduring grip of the gender pay gap, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

Report | Wages, Incomes, and Wealth

“Women’s work” and the gender pay gap : How discrimination, societal norms, and other forces affect women’s occupational choices—and their pay

Report • By Jessica Schieder and Elise Gould • July 20, 2016

Download PDF

Press release

Share this page:

What this report finds: Women are paid 79 cents for every dollar paid to men—despite the fact that over the last several decades millions more women have joined the workforce and made huge gains in their educational attainment. Too often it is assumed that this pay gap is not evidence of discrimination, but is instead a statistical artifact of failing to adjust for factors that could drive earnings differences between men and women. However, these factors—particularly occupational differences between women and men—are themselves often affected by gender bias. For example, by the time a woman earns her first dollar, her occupational choice is the culmination of years of education, guidance by mentors, expectations set by those who raised her, hiring practices of firms, and widespread norms and expectations about work–family balance held by employers, co-workers, and society. In other words, even though women disproportionately enter lower-paid, female-dominated occupations, this decision is shaped by discrimination, societal norms, and other forces beyond women’s control.

Why it matters, and how to fix it: The gender wage gap is real—and hurts women across the board by suppressing their earnings and making it harder to balance work and family. Serious attempts to understand the gender wage gap should not include shifting the blame to women for not earning more. Rather, these attempts should examine where our economy provides unequal opportunities for women at every point of their education, training, and career choices.

Introduction and key findings

Women are paid 79 cents for every dollar paid to men (Hegewisch and DuMonthier 2016). This is despite the fact that over the last several decades millions more women have joined the workforce and made huge gains in their educational attainment.

Critics of this widely cited statistic claim it is not solid evidence of economic discrimination against women because it is unadjusted for characteristics other than gender that can affect earnings, such as years of education, work experience, and location. Many of these skeptics contend that the gender wage gap is driven not by discrimination, but instead by voluntary choices made by men and women—particularly the choice of occupation in which they work. And occupational differences certainly do matter—occupation and industry account for about half of the overall gender wage gap (Blau and Kahn 2016).

To isolate the impact of overt gender discrimination—such as a woman being paid less than her male coworker for doing the exact same job—it is typical to adjust for such characteristics. But these adjusted statistics can radically understate the potential for gender discrimination to suppress women’s earnings. This is because gender discrimination does not occur only in employers’ pay-setting practices. It can happen at every stage leading to women’s labor market outcomes.

Take one key example: occupation of employment. While controlling for occupation does indeed reduce the measured gender wage gap, the sorting of genders into different occupations can itself be driven (at least in part) by discrimination. By the time a woman earns her first dollar, her occupational choice is the culmination of years of education, guidance by mentors, expectations set by those who raised her, hiring practices of firms, and widespread norms and expectations about work–family balance held by employers, co-workers, and society. In other words, even though women disproportionately enter lower-paid, female-dominated occupations, this decision is shaped by discrimination, societal norms, and other forces beyond women’s control.

This paper explains why gender occupational sorting is itself part of the discrimination women face, examines how this sorting is shaped by societal and economic forces, and explains that gender pay gaps are present even  within  occupations.

Key points include:

  • Gender pay gaps within occupations persist, even after accounting for years of experience, hours worked, and education.
  • Decisions women make about their occupation and career do not happen in a vacuum—they are also shaped by society.
  • The long hours required by the highest-paid occupations can make it difficult for women to succeed, since women tend to shoulder the majority of family caretaking duties.
  • Many professions dominated by women are low paid, and professions that have become female-dominated have become lower paid.

This report examines wages on an hourly basis. Technically, this is an adjusted gender wage gap measure. As opposed to weekly or annual earnings, hourly earnings ignore the fact that men work more hours on average throughout a week or year. Thus, the hourly gender wage gap is a bit smaller than the 79 percent figure cited earlier. This minor adjustment allows for a comparison of women’s and men’s wages without assuming that women, who still shoulder a disproportionate amount of responsibilities at home, would be able or willing to work as many hours as their male counterparts. Examining the hourly gender wage gap allows for a more thorough conversation about how many factors create the wage gap women experience when they cash their paychecks.

Within-occupation gender wage gaps are large—and persist after controlling for education and other factors

Those keen on downplaying the gender wage gap often claim women voluntarily choose lower pay by disproportionately going into stereotypically female professions or by seeking out lower-paid positions. But even when men and women work in the same occupation—whether as hairdressers, cosmetologists, nurses, teachers, computer engineers, mechanical engineers, or construction workers—men make more, on average, than women (CPS microdata 2011–2015).

As a thought experiment, imagine if women’s occupational distribution mirrored men’s. For example, if 2 percent of men are carpenters, suppose 2 percent of women become carpenters. What would this do to the wage gap? After controlling for differences in education and preferences for full-time work, Goldin (2014) finds that 32 percent of the gender pay gap would be closed.

However, leaving women in their current occupations and just closing the gaps between women and their male counterparts within occupations (e.g., if male and female civil engineers made the same per hour) would close 68 percent of the gap. This means examining why waiters and waitresses, for example, with the same education and work experience do not make the same amount per hour. To quote Goldin:

Another way to measure the effect of occupation is to ask what would happen to the aggregate gender gap if one equalized earnings by gender within each occupation or, instead, evened their proportions for each occupation. The answer is that equalizing earnings within each occupation matters far more than equalizing the proportions by each occupation. (Goldin 2014)

This phenomenon is not limited to low-skilled occupations, and women cannot educate themselves out of the gender wage gap (at least in terms of broad formal credentials). Indeed, women’s educational attainment outpaces men’s; 37.0 percent of women have a college or advanced degree, as compared with 32.5 percent of men (CPS ORG 2015). Furthermore, women earn less per hour at every education level, on average. As shown in Figure A , men with a college degree make more per hour than women with an advanced degree. Likewise, men with a high school degree make more per hour than women who attended college but did not graduate. Even straight out of college, women make $4 less per hour than men—a gap that has grown since 2000 (Kroeger, Cooke, and Gould 2016).

Women earn less than men at every education level : Average hourly wages, by gender and education, 2015

The data below can be saved or copied directly into Excel.

The data underlying the figure.

Source :  EPI analysis of Current Population Survey Outgoing Rotation Group microdata

Copy the code below to embed this chart on your website.

Steering women to certain educational and professional career paths—as well as outright discrimination—can lead to different occupational outcomes

The gender pay gap is driven at least in part by the cumulative impact of many instances over the course of women’s lives when they are treated differently than their male peers. Girls can be steered toward gender-normative careers from a very early age. At a time when parental influence is key, parents are often more likely to expect their sons, rather than their daughters, to work in science, technology, engineering, or mathematics (STEM) fields, even when their daughters perform at the same level in mathematics (OECD 2015).

Expectations can become a self-fulfilling prophecy. A 2005 study found third-grade girls rated their math competency scores much lower than boys’, even when these girls’ performance did not lag behind that of their male counterparts (Herbert and Stipek 2005). Similarly, in states where people were more likely to say that “women [are] better suited for home” and “math is for boys,” girls were more likely to have lower math scores and higher reading scores (Pope and Sydnor 2010). While this only establishes a correlation, there is no reason to believe gender aptitude in reading and math would otherwise be related to geography. Parental expectations can impact performance by influencing their children’s self-confidence because self-confidence is associated with higher test scores (OECD 2015).

By the time young women graduate from high school and enter college, they already evaluate their career opportunities differently than young men do. Figure B shows college freshmen’s intended majors by gender. While women have increasingly gone into medical school and continue to dominate the nursing field, women are significantly less likely to arrive at college interested in engineering, computer science, or physics, as compared with their male counterparts.

Women arrive at college less interested in STEM fields as compared with their male counterparts : Intent of first-year college students to major in select STEM fields, by gender, 2014

Source:  EPI adaptation of Corbett and Hill (2015) analysis of Eagan et al. (2014)

These decisions to allow doors to lucrative job opportunities to close do not take place in a vacuum. Many factors might make it difficult for a young woman to see herself working in computer science or a similarly remunerative field. A particularly depressing example is the well-publicized evidence of sexism in the tech industry (Hewlett et al. 2008). Unfortunately, tech isn’t the only STEM field with this problem.

Young women may be discouraged from certain career paths because of industry culture. Even for women who go against the grain and pursue STEM careers, if employers in the industry foster an environment hostile to women’s participation, the share of women in these occupations will be limited. One 2008 study found that “52 percent of highly qualified females working for SET [science, technology, and engineering] companies quit their jobs, driven out by hostile work environments and extreme job pressures” (Hewlett et al. 2008). Extreme job pressures are defined as working more than 100 hours per week, needing to be available 24/7, working with or managing colleagues in multiple time zones, and feeling pressure to put in extensive face time (Hewlett et al. 2008). As compared with men, more than twice as many women engage in housework on a daily basis, and women spend twice as much time caring for other household members (BLS 2015). Because of these cultural norms, women are less likely to be able to handle these extreme work pressures. In addition, 63 percent of women in SET workplaces experience sexual harassment (Hewlett et al. 2008). To make matters worse, 51 percent abandon their SET training when they quit their job. All of these factors play a role in steering women away from highly paid occupations, particularly in STEM fields.

The long hours required for some of the highest-paid occupations are incompatible with historically gendered family responsibilities

Those seeking to downplay the gender wage gap often suggest that women who work hard enough and reach the apex of their field will see the full fruits of their labor. In reality, however, the gender wage gap is wider for those with higher earnings. Women in the top 95th percentile of the wage distribution experience a much larger gender pay gap than lower-paid women.

Again, this large gender pay gap between the highest earners is partially driven by gender bias. Harvard economist Claudia Goldin (2014) posits that high-wage firms have adopted pay-setting practices that disproportionately reward individuals who work very long and very particular hours. This means that even if men and women are equally productive per hour, individuals—disproportionately men—who are more likely to work excessive hours and be available at particular off-hours are paid more highly (Hersch and Stratton 2002; Goldin 2014; Landers, Rebitzer, and Taylor 1996).

It is clear why this disadvantages women. Social norms and expectations exert pressure on women to bear a disproportionate share of domestic work—particularly caring for children and elderly parents. This can make it particularly difficult for them (relative to their male peers) to be available at the drop of a hat on a Sunday evening after working a 60-hour week. To the extent that availability to work long and particular hours makes the difference between getting a promotion or seeing one’s career stagnate, women are disadvantaged.

And this disadvantage is reinforced in a vicious circle. Imagine a household where both members of a male–female couple have similarly demanding jobs. One partner’s career is likely to be prioritized if a grandparent is hospitalized or a child’s babysitter is sick. If the past history of employer pay-setting practices that disadvantage women has led to an already-existing gender wage gap for this couple, it can be seen as “rational” for this couple to prioritize the male’s career. This perpetuates the expectation that it always makes sense for women to shoulder the majority of domestic work, and further exacerbates the gender wage gap.

Female-dominated professions pay less, but it’s a chicken-and-egg phenomenon

Many women do go into low-paying female-dominated industries. Home health aides, for example, are much more likely to be women. But research suggests that women are making a logical choice, given existing constraints . This is because they will likely not see a significant pay boost if they try to buck convention and enter male-dominated occupations. Exceptions certainly exist, particularly in the civil service or in unionized workplaces (Anderson, Hegewisch, and Hayes 2015). However, if women in female-dominated occupations were to go into male-dominated occupations, they would often have similar or lower expected wages as compared with their female counterparts in female-dominated occupations (Pitts 2002). Thus, many women going into female-dominated occupations are actually situating themselves to earn higher wages. These choices thereby maximize their wages (Pitts 2002). This holds true for all categories of women except for the most educated, who are more likely to earn more in a male profession than a female profession. There is also evidence that if it becomes more lucrative for women to move into male-dominated professions, women will do exactly this (Pitts 2002). In short, occupational choice is heavily influenced by existing constraints based on gender and pay-setting across occupations.

To make matters worse, when women increasingly enter a field, the average pay in that field tends to decline, relative to other fields. Levanon, England, and Allison (2009) found that when more women entered an industry, the relative pay of that industry 10 years later was lower. Specifically, they found evidence of devaluation—meaning the proportion of women in an occupation impacts the pay for that industry because work done by women is devalued.

Computer programming is an example of a field that has shifted from being a very mixed profession, often associated with secretarial work in the past, to being a lucrative, male-dominated profession (Miller 2016; Oldenziel 1999). While computer programming has evolved into a more technically demanding occupation in recent decades, there is no skills-based reason why the field needed to become such a male-dominated profession. When men flooded the field, pay went up. In contrast, when women became park rangers, pay in that field went down (Miller 2016).

Further compounding this problem is that many professions where pay is set too low by market forces, but which clearly provide enormous social benefits when done well, are female-dominated. Key examples range from home health workers who care for seniors, to teachers and child care workers who educate today’s children. If closing gender pay differences can help boost pay and professionalism in these key sectors, it would be a huge win for the economy and society.

The gender wage gap is real—and hurts women across the board. Too often it is assumed that this gap is not evidence of discrimination, but is instead a statistical artifact of failing to adjust for factors that could drive earnings differences between men and women. However, these factors—particularly occupational differences between women and men—are themselves affected by gender bias. Serious attempts to understand the gender wage gap should not include shifting the blame to women for not earning more. Rather, these attempts should examine where our economy provides unequal opportunities for women at every point of their education, training, and career choices.

— This paper was made possible by a grant from the Peter G. Peterson Foundation. The statements made and views expressed are solely the responsibility of the authors.

— The authors wish to thank Josh Bivens, Barbara Gault, and Heidi Hartman for their helpful comments.

About the authors

Jessica Schieder joined EPI in 2015. As a research assistant, she supports the research of EPI’s economists on topics such as the labor market, wage trends, executive compensation, and inequality. Prior to joining EPI, Jessica worked at the Center for Effective Government (formerly OMB Watch) as a revenue and spending policies analyst, where she examined how budget and tax policy decisions impact working families. She holds a bachelor’s degree in international political economy from Georgetown University.

Elise Gould , senior economist, joined EPI in 2003. Her research areas include wages, poverty, economic mobility, and health care. She is a co-author of The State of Working America, 12th Edition . In the past, she has authored a chapter on health in The State of Working America 2008/09; co-authored a book on health insurance coverage in retirement; published in venues such as The Chronicle of Higher Education ,  Challenge Magazine , and Tax Notes; and written for academic journals including Health Economics , Health Affairs, Journal of Aging and Social Policy, Risk Management & Insurance Review, Environmental Health Perspectives , and International Journal of Health Services . She holds a master’s in public affairs from the University of Texas at Austin and a Ph.D. in economics from the University of Wisconsin at Madison.

Anderson, Julie, Ariane Hegewisch, and Jeff Hayes 2015. The Union Advantage for Women . Institute for Women’s Policy Research.

Blau, Francine D., and Lawrence M. Kahn 2016. The Gender Wage Gap: Extent, Trends, and Explanations . National Bureau of Economic Research, Working Paper No. 21913.

Bureau of Labor Statistics (BLS). 2015. American Time Use Survey public data series. U.S. Census Bureau.

Corbett, Christianne, and Catherine Hill. 2015. Solving the Equation: The Variables for Women’s Success in Engineering and Computing . American Association of University Women (AAUW).

Current Population Survey Outgoing Rotation Group microdata (CPS ORG). 2011–2015. Survey conducted by the Bureau of the Census for the Bureau of Labor Statistics [ machine-readable microdata file ]. U.S. Census Bureau.

Goldin, Claudia. 2014. “ A Grand Gender Convergence: Its Last Chapter .” American Economic Review, vol. 104, no. 4, 1091–1119.

Hegewisch, Ariane, and Asha DuMonthier. 2016. The Gender Wage Gap: 2015; Earnings Differences by Race and Ethnicity . Institute for Women’s Policy Research.

Herbert, Jennifer, and Deborah Stipek. 2005. “The Emergence of Gender Difference in Children’s Perceptions of Their Academic Competence.” Journal of Applied Developmental Psychology , vol. 26, no. 3, 276–295.

Hersch, Joni, and Leslie S. Stratton. 2002. “ Housework and Wages .” The Journal of Human Resources , vol. 37, no. 1, 217–229.

Hewlett, Sylvia Ann, Carolyn Buck Luce, Lisa J. Servon, Laura Sherbin, Peggy Shiller, Eytan Sosnovich, and Karen Sumberg. 2008. The Athena Factor: Reversing the Brain Drain in Science, Engineering, and Technology . Harvard Business Review.

Kroeger, Teresa, Tanyell Cooke, and Elise Gould. 2016.  The Class of 2016: The Labor Market Is Still Far from Ideal for Young Graduates . Economic Policy Institute.

Landers, Renee M., James B. Rebitzer, and Lowell J. Taylor. 1996. “ Rat Race Redux: Adverse Selection in the Determination of Work Hours in Law Firms .” American Economic Review , vol. 86, no. 3, 329–348.

Levanon, Asaf, Paula England, and Paul Allison. 2009. “Occupational Feminization and Pay: Assessing Causal Dynamics Using 1950-2000 U.S. Census Data.” Social Forces, vol. 88, no. 2, 865–892.

Miller, Claire Cain. 2016. “As Women Take Over a Male-Dominated Field, the Pay Drops.” New York Times , March 18.

Oldenziel, Ruth. 1999. Making Technology Masculine: Men, Women, and Modern Machines in America, 1870-1945 . Amsterdam: Amsterdam University Press.

Organisation for Economic Co-operation and Development (OECD). 2015. The ABC of Gender Equality in Education: Aptitude, Behavior, Confidence .

Pitts, Melissa M. 2002. Why Choose Women’s Work If It Pays Less? A Structural Model of Occupational Choice. Federal Reserve Bank of Atlanta, Working Paper 2002-30.

Pope, Devin G., and Justin R. Sydnor. 2010. “ Geographic Variation in the Gender Differences in Test Scores .” Journal of Economic Perspectives , vol. 24, no. 2, 95–108.

See related work on Wages, Incomes, and Wealth | Women

See more work by Jessica Schieder and Elise Gould

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Front Sociol

Logo of frontsoc

The Gender Pay Gap: Income Inequality Over Life Course – A Multilevel Analysis

Lisa toczek.

1 Department of Medical Sociology, Institute of the History, Philosophy and Ethics of Medicine, Faculty of Medicine, University of Ulm, Ulm, Germany

2 Department of Social Medicine, Care and Public Health Research Institute (CAPHRI), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands

Richard Peter

Maria Bohdalova , Comenius University in Bratislava, Slovakia

Associated Data

The datasets presented in this article are not readily available because the study data contain social security information. Due to legal regulations in Germany, it is not permitted to share data with social security information. Requests to access the datasets should be directed to [email protected] .

The gender pay gap has been observed for decades, and still exists. Due to a life course perspective, gender differences in income are analyzed over a period of 24 years. Therefore, this study aims to investigate income trajectories and the differences regarding men and women. Moreover, the study examines how human capital determinants, occupational positions and factors that accumulate disadvantages over time contribute to the explanation of the GPG in Germany. Therefore, this study aims to contribute to a better understanding of the GPG over the life course. The data are based on the German cohort study lidA (living at work), which links survey data individually with employment register data. Based on social security data, the income of men and women over time are analyzed using a multilevel analysis. The results show that the GPG exists in Germany over the life course: men have a higher daily average income per year than women. In addition, the income developments of men rise more sharply than those of women over time. Moreover, even after controlling for factors potentially explaining the GPG like education, work experience, occupational status or unemployment episodes the GPG persists. Concluding, further research is required that covers additional factors like individual behavior or information about the labor market structure for a better understanding of the GPG.

1 Introduction

In the European Union (EU) in 2019, women’s average gross hourly earnings were 14.1% below the earnings of men ( Eurostat, 2021a ). The gender pay gap (GPG) has existed for decades and still remains to date. According to Eurostat GPG statistics, the key priorities of gender policies are to reduce the wage differences between men and women at both the EU and national levels ( Eurostat, 2021a ). Nevertheless, the careers of men and women differ considerably in the labor market, with women being paid less than men ( Arulampalam et al., 2005 ; Radl, 2013 ; Boll et al., 2017 ). A report from the European Parliament in 2015 about gender equality assessed Germany’s performance in that field as mediocre. The federal government in Germany has already improved laws that focus on gender equality ( Botsch, 2015 ). Regarding Germany, in 2019 the earning difference between men and women were found to be 19.2% ( Eurostat, 2021a ). The reasons behind gender income inequality are complex and have multidimensional explanations.

1.1 Determinants of the GPG

The early 1990s represented a turning point for the participation of women in the labor market ( Botsch, 2015 ). In previous years, women’s participation rate in the workforce has strongly increased, from 51.9% in the year 1980 (West Germany) to 74.9% in 2019 ( OECD, 2021 ). This upward trend represents the increase of women working at older ages ( Sackmann, 2018 ). However, the gender income inequality remains. Different explaining factors of the GPG were found in previous research: patterns of employment, access to education and interruptions in the careers of men and women.

Although there are nearly equal numbers of men and women in the labor market, when considering women’s careers, various gender-specific barriers are occurring. The working patterns were found to have a relevant impact on the GPG in previous research. Atypical employment is increasing and this result in an expansion of the low-wage sector, which mainly affects women in Germany ( Botsch, 2015 ). Additionally, labor market integration of women has mainly been in jobs that provide few working hours and low wages ( Botsch, 2015 ). Moreover, part-time employment represents a common employment type in Germany, which is more frequent among women – as various studies have demonstrated – and explains the GPG significantly ( Boll et al., 2017 ; Ponthieux and Meurs, 2015 ; Boll and Leppin, 2015 ). In addition, the part-time employment occurs more often in occupations characterized by a high proportion of women and low wages ( Matteazzi et al., 2018 ; Boll and Leppin, 2015 ; Hasselhorn, 2020 ; Manzoni et al., 2014 ). Another employment type with few working hours and low pay is a special form of part-time work: marginal work. Marginal work is defined as earnings up to 450 Euros per month or up to 5.400 Euros annually. Also, it is also more common among women than among men ( Botsch, 2015 ; Broughton et al., 2016 ). The marginal part-time work has increased in nearly all EU countries, especially in Germany where it can be found to be above the EU average ( Broughton et al., 2016 ). Besides the working time, occupational status influences the wage differences of men and women. Female-dominated occupational sectors are characterized by lower wages compared to male-dominated ones ( Brynin and Perales, 2016 ). Additionally, in women-dominant industries, remunerations are less attractive and it often entails low-status work in sectors like retail, caregiving or education ( Boll and Leppin, 2015 ; Hasselhorn, 2020 ; Matteazzi et al., 2018 ; Brynin and Perales, 2016 ). Hence, working patterns such as the amount of working time or the occupational status are crucial determinants that contribute to explaining the GPG in Germany ( Blau and Kahn, 2017 ; Boll et al., 2017 ).

The access to education and vocational training are important factors, that influence the GPG. Both influence a first access to the labor market and are considered to be ‘door openers’ for the working life ( Manzoni et al., 2014 ). In Germany, education represents a largely stable variable over time, i.e. only few individuals increase their first educational attainment. Education influences the careers of men and women and can be seen as important an determinant of future earnings ( Boll et al., 2017 ; Bovens and Wille, 2017 ). Although women’s educational attainment caught up with those of men’s in recent years, for men, a higher qualification was still rewarded more than for women ( Botsch, 2015 ; Boll et al., 2017 ). Moreover, in previous research the impact of education on the GPG was not found to be consistent with different influences for men than for women ( Aisenbrey and Bruckner, 2008 ; Ponthieux and Meurs, 2015 ). Manzoni et al. (2014) found out, that the effect of education on career developments were dependent of their particular educational levels. In addition, regardless of the women’s educational catching-up in the last years, looking at older cohorts – born between 1950 and 1964 – women had a lower average level of education than men ( Boll et al., 2017 ).

An increasing GPG over time can also be the result of interruptions in careers, which are found more often for women than for men ( Eurostat, 2021a ; Boll and Leppin, 2015 ). Previous research of Boll and Leppin (2015) has identified explanations for the GPG in Germany by analyzing data from the German Socio-Economic Panel (SOEP) in 2011. They demonstrated that the amount of time spent in actual work was lower for women than for men. Therefore, women gain less work experience than their male counterparts ( Boll and Leppin, 2015 ). Career interruptions not only impact the accumulation of work experience but also the scope of future work. Especially in the period of family formation higher rates of part-time employment among women can be observed ( Boll et al., 2017 ; Ponthieux and Meurs, 2015 ). Moreover, work-life interruptions such as raising children or caring for family members have a major impact on the employment development and are more likely to appear for women than for men ( Ponthieux and Meurs, 2015 ). Although the employment rate of mothers has increased in recent years in Germany, it is still considerably lower than that of fathers ( Federal Statistical Office, 2021 ). Hence, taking care of children is still attributed to mothers, to the detriment of their careers ( Botsch, 2015 ). A recent study, however, found sizable wage differences between men and women who were not parents, refuting the assumption that the GPG applies only to parents ( Joshi et al., 2020 ). Other interruptions in the working lives of men and women are caused by unemployment. Azmat et al. (2006) found that in Germany, transition rates from employment to unemployment were higher for women than for men. Career interruptions have lasting negative effects on women’s wages. Therefore, it can be useful to examine unemployment when analyzing gender inequality in the labor market ( Eurostat, 2021b ).

1.2 Theoretical Background

1.2.1 human capital model.

In previous research, economic theories had been applied to explain the income differences of men and women. Two essential factors could be found: qualification and discrimination. The human capital model claims that qualifications with greater investments can be directly related to higher wages of men and women. The earnings are assumed to be based on skills and abilities that are required through education and vocational training, and work experience ( Grybaitė, 2006 ; Lips, 2013 ; Blau and Kahn, 2007 ). Educational attainment of women has caught up in recent years ( Botsch, 2015 ). However, women’s investments in qualifications were still not equally rewarded as those of men. Therefore, the expected narrowing of the GPG was not confirmed in earlier research ( Boll et al., 2017 ; Lips, 2013 ). Another determinant of the human capital model is work experience. Labor market experience contributes to a large extent to the gender inequality in earnings ( Sierminska et al., 2010 ). Hence, work experience influences the wages of men and women. On the one hand, interruptions due to family life lower especially women’s labor market experience compared to men. On the other hand, part-time employment is more frequent among women with fewer working hours and therefore less work experience. The lesser accumulation of work experience leads to lower human capital and lower earnings for women compared with men ( Blau and Kahn, 2007 ; Mincer and Polachek, 1974 ). Nonetheless, the association of work experience and income is more complex. Regarding the wages of men and women the influence of occupation itself also needs to be considered ( Lips, 2013 ). In the paper of Polachek (1981) different occupations over the careers of men and women were explained by different labor force participation over lifetime. Referring to the human capital model, it is argued that women more likely expect discontinuous employment. Therefore, women choose occupations with fewer penalties for interruptions ( Polachek, 1981 ). However, it should be questioned if working in specific occupations can be defined as a simple choice ( Lips, 2013 ). Besides, part-time employment is found to be more frequent among women, which ultimately leads to few working hours and hence low earnings ( Botsch, 2015 ; Ponthieux and Meurs, 2015 ; Boll et al., 2017 ). Though different working hours cannot be defined as a simple choice either ( Lips, 2013 ).

Earlier criticism about the human capital model discussed that the wage differences of men and women cannot only be explained by the qualification and the labor market experience ( Grybaitė, 2006 ; Lips, 2013 ). Another theoretical approach explaining the GPG refers to labor market discriminations, which effect occupations and wages ( Boll et al., 2017 ; Grybaitė, 2006 ). On the one hand, occupational sex segregation can be associated with income differences of men and women. The different occupational allocation in the labor market of men and women are defined as allocative discrimination ( Petersen and Morgan, 1995 ). In addition, occupations in female-dominated sectors are mostly characterized by low-wages compared to more male-dominated occupations ( Brynin and Perales, 2016 ). On the other hand, even with equal occupational positions and skill requirements women mostly earn less than men, this refers to the valuative discrimination ( Petersen and Morgan, 1995 ). Even within female-dominated jobs a certain discrimination exists, with men being paid more than women for the same occupation. Additionally, employment sectors with a large number of female workers are more likely to be associated with less prestige and lower earnings ( Lips, 2013 ). Achatz et al. (2005) analyzed the GPG with an employer-employee database in Germany. The authors examined the discrimination in the allocation of jobs, differences in productivity-, and firm-related characteristics. They found out that in occupational groups within companies, the wages decreased with a higher share of women in a group. Additionally, a higher proportion of women in a groups resulted in a higher wage loss for women than for men ( Achatz et al., 2005 ).

Although relevant criticism of the human capital model exists, its determinants are still found to be important in explaining the wage differences of men and women ( Boll et al., 2017 ). Nonetheless, income differences of men and women can still be found even with the same investments in human capital. The reason for this could be the occupational discrimination of women ( Brynin and Perales, 2016 ; Achatz et al., 2005 ; Lips, 2013 ). Therefore, the occupational positions can be associated as a relevant factor of the GPG.

1.2.2 Life Course Approach

Besides economic theories, there are other theoretical approaches of explaining the GPG. One of them focusses on the accumulation of disadvantages over the life course: the ‘cumulative advantage/disadvantage theory’ by Dannefer (2003) . It also involves social inequalities which can expand over time. The employment histories of men and women evolve over their working lives and during different career stages, advantages and disadvantages can accumulate. First, this life course perspective considers and underlines the dynamic approach of how factors shape each individual life course. Secondly, it can contribute to explain the different income trajectories of men and women over their working lives ( Doren and Lin, 2019 ; Dannefer, 2003 ; Härkönen et al., 2016 ; Manzoni et al., 2014 ; Barone and Schizzerotto, 2011 ).

The importance of the life course perspective was underlined by some earlier studies. They demonstrated that certain conditions in adolescence or early work-life affected future careers of men and women. Visser et al. (2016) found evidence for an accumulation of disadvantages in the labor market over working life, in particular for the lower educated. The cohort study SHARE had assessed economic and social changes over the life course in numerous European countries in several publications ( Börsch-Supan et al., 2013 ). Overall, education and vocational training, occupational positions and income illustrate parts of the social structure which in turn can demonstrate gender inequality in the labor market ( Boll and Leppin, 2015 ; Hasselhorn, 2020 ; Du Prel et al., 2019 ). Moreover, family events and labor market processes repeatedly affect one another over the life course. The work-family trajectories have consequences on employment outcomes such as earnings ( Aisenbrey and Fasang, 2017 ; Jalovaara and Fasang, 2019 ). Furthermore, the income differences of men and women are not steady but tend to be lower at the beginning of employment and increase with age ( Goldin, 2014 ; Eurostat, 2021a ). Therefore, careers should not be analyzed in a single snapshot, but with a more appropriate life course approach that takes into account factors that influences the wages of men and women over time.

1.3 Aim and Hypotheses

The aim of the present study is to examine income trajectories and to investigate the income differences of men and women over their life course. We are interested in how human capital determinants, occupational positions and the accumulation of disadvantages over time contribute to the explanation of the GPG from a life course perspective.

Focusing on older German employees, our study includes 24 years of their careers and considers possible cumulative disadvantages of women in the labor market compared to those of men. In contrast to Polachek (1981) , who analyzed the GPG as a unit over lifetime, we used a life course approach in regard to the theory of cumulative disadvantages of Dannefer (2003) . Accordingly, we analyze explaining factors of the GPG not only in a single snapshot but over the working careers of men and women. Life course data based on register data and characteristics of employment biographies with information on a daily basis are two additional important and valuable advantages of our study. Existing studies rarely have this information in the form of life course data and when they do, the data is either self-reported and retrospective including possible recall bias, or based on register data which was only collected on a yearly basis. We expect to find differences in the income of men and women over a period of time with overall higher, and more increasing earnings of men than of women.

Hypothesis 1 (H1): The differences of income trajectories throughout working life is expected to demonstrate more income over time among men than among women.

Education and vocational training, and work experience are human capital determinants. They have influence on the earnings of men and women. Although previous research estimated additional important factors contributing to the GPG, human capital capabilities continue to be relevant in explaining the wage differences of men and women ( Blau and Kahn, 2007 ; Boll et al., 2017 ). In our life course approach, we control for human capital determinants due to the information about education and vocational training, and work experience via the amount of working time (full-/part-time) for each year. We expect to find a strong influence of both determinants on the wages of men and women in Germany.

Hypothesis 2 (H2): The income differences between men and women can be explained by determinants of the human capital model.

Previous research found out that factors such as occupational status had an impact on the income differences of men and women ( Blau and Kahn, 2007 ; Boll et al., 2017 ). For a better understanding and explanation of the GPG, gender differences regarding occupational positions must be included to human capital determinants ( Boll et al., 2017 ). We assume that men and women can be found in different occupations, measured via occupational status, and these explain a substantial part of the wage differences between men and women.

Hypothesis 3 (H3): The occupational status of men and women can contribute to the explanation of the GPG.

The life-course approach acknowledges time as an important influence on the wages of men and women. Income differences of men and women can change over time and career stages, while the GPG was found to be lower at the beginning of the employment career and widened with age ( Goldin, 2014 ). Hence, the earning differences between men and women tend to be higher for older employees ( Eurostat, 2021a ; Federal Statistical Office, 2016 ). To account for the influence of age, we additionally included the age of each person in our analysis. Another factor that changes over time and contribute to explain the GPG is part-time work. In general, part-time work result in a disadvantage in pay compared to full-time employment ( Ponthieux and Meurs, 2015 ). However, explanations of the GPG due to different amount of part-time work need to include a special form of part-time work: marginal work. Marginal employment conditions are characterized by low wages and high job insecurities. Also discontinuous employment due to unemployment are characterized by job insecurities and affect the low-paid sector – therefore mainly women ( Botsch, 2015 ). Besides the human capital determinants and occupational positions as important factors explaining the GPG, the region of employment influences the wages of men and women and can also change over the career stages. Evidence from the Federal Statistical Office of Germany in 2014 noticed a divergence of the GPG trend in the formerly separated parts of Germany. The GPG among employees was wider in the Western part (24%) compared to the Eastern part of Germany, where it was found to be 9% ( Federal Statistical Office, 2016 ). Therefore, to examine income differences, the amount of less advantaged employment such as marginal work or periods of unemployment throughout the careers of men and women needs to be considered, as well as the region of employment and the age of a person.

Hypothesis 4 (H4): Factors of the living environment such as regional factors, and social disadvantage work conditions such as marginal work or unemployment, contribute to the income difference between men and women.

Our study about the GPG in Germany adds to earlier research in different ways. First, the accumulation of inequalities over the life course of men and women is known, but only few studies exist that focus on income through life course approach. We can analyze factors that influence the GPG over the careers of men and women due to the availability of social security data with daily information of each person. Besides the wages of men and women, the data additionally contains time-varying information about occupational status, working time and unemployment breaks. Therefore, we use longitudinal data of the German baby-boomers which allow us to measure changes of factors explaining the GPG over time. Second, a relevant contribution of our study is that we can consider different factors contributing to the explanation of the GPG through a life course perspective. The few studies focusing on the GPG over life course included either only determinants of the human capital model ( Joshi et al., 2020 ) or factors of occupational careers ( Moore, 2018 ). Some research included both aspects but had other disadvantages, such as Monti et al. (2020) , who could not analyze temporal evolution of the GPG with the data available. Moreover, previous research on the GPG in Germany could not trace vertical occupational segregation due to missing information of part-time workers, included only data of West Germany and used merely accumulated earnings over time ( Boll et al., 2017 ). Nonetheless, previous research demonstrated the need of analyzing the GPG via life course approach with which the accumulation of advantages and disadvantages for both, men and women, can be considered. Third, due to the usage of a multilevel framework we can examine income trajectories simultaneously at an individual and at a time-related level. Moreover, the influences of time-invariant and time-varying factors can be analyzed regarding differences in earnings of men and women. Hence, the multilevel approach examines income changes between and also within individuals. Furthermore, it acknowledges the importance of the life course perspective with including time as a factor in the model. A recent study also used growth curve modelling to explain gender inequality in the US. However, gender inequality measured through gender earnings was analyzed only across education and race without considering other variables explaining the GPG ( Doren and Lin, 2019 ). To our knowledge, there exists no research on the GPG that covers several essential determinants, hence we aim to fill those research gaps with our study.

2 Materials and Methods

The data were obtained from the cohort study lidA (living at work). The lidA sample includes two cohorts of employees (born in 1959 and in 1965) and was drawn randomly from social security data. LidA combines two major sources of information – register data of social insurance and questionnaire data derived from a survey. The survey was conducted in two waves, 2011 (t 0 ) and 2014 (t 1 ) ( Hasselhorn et al., 2014 ). The ethics commission of the University of Wuppertal approved the study.

In Germany, the social insurance system assists people in case of an emergency such as unemployment, illness, retirement, or nursing care. Employees have to make a contribution to the system depending on their income – except of civil servants or self-employed ( Federal Agency for Civic Education, 2021 ). In our analyses, we included men and women in Germany who participated in the baseline (2011) and in the follow-up (2014), were employed during both waves and subjected to social security contributions. We only included persons who agreed via written consent to the linkage of the survey data to their social security data. Thus, our sample for analysis included 3,338 individuals ( Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is fsoc-06-815376-g001.jpg

Decision tree – inclusion and exclusion criteria in the sample for analysis.

2.2 Measurements

The social security data of the Institute for Employment Research of the German Federal Employment Agency is based on employers’ reports. The so-called “Integrated Employment Biographies” (IEB) or register data comprises information about individual employment; that is, type of employment, occupational status, episodes of unemployment and income with information about age, gender and education and vocational training. The IEB data are retrieved from employers’ yearly reports submitted to the social security authority ( Hasselhorn et al., 2014 ). The information of the register data was available on a daily basis and contained yearly information from 1993 to 2017 for each person. However, the IEB data contain missing details, especially regarding information that is not directly relevant for social security data and therefore, not of the highest priority for employers’ reports. This is particularly true for data on gender and education and vocational training. As our sample participants consented to the linkage of IEB with questionnaire data, we were able to impute the missing information on these variables with the help of the survey data. All time-varying information in the IEB is coded to the day. Our data have a multilevel structure with time of measurements (Level 1) being nested within individuals (Level 2) and defined as follows.

2.2.1 Level 1 Variables

In our analysis the variable time was based on information about the year of measurement. The starting point represents 1993 and was coded with zero. The outcome variable income was calculated from the IEB data as nominal wages in Euros (€). As time-varying variable, it can be defined as the average daily income per year of each person whose work contributes to social security and/or marginal employment. Information about the work experience due to working time was available for jobs that require social security contribution. To draw this information from the IEB data, the time-varying variable working time was computed with three different types: full- and part-time, part-time, and full-time. The data on occupational status were based on the International Standard of Classification of Occupations 2008 (ISCO-08). This time-varying variable contained information on the occupational status of each job that a person has held over the years. For the multilevel analysis, ISCO-08 was transformed from the German classification KldB 2010 (classification of occupations 2010) of the register data. ISCO-08 is structured according to the skill level and specialization of jobs, which are grouped into four hierarchical levels. Occupational status in our study was defined by the 10 major groups (level one of the classifications ISCO-08), without the group of armed forces who did not appear in our data. Therefore, the nine groups were analyzed: elementary occupations; plant and machine operators and assemblers; craft and related trades workers; skilled agricultural, forestry and fishery workers; services and sales workers; clerical support workers; technicians and associate professionals; professionals; and managers ( International Labour Office, 2012 ). Moreover, information about the number of episodes of marginal work could also be drawn from the register data. Marginal work was defined due to having at least one marginal employment per year. The time periods (episodes) of every marginal employment were counted and added up yearly. Furthermore, the duration of unemployment as time-varying variable was calculated due to information of the register data about the days of unemployment per year. In the register data unemployment is defined as being unemployed or unable to work for up to 42 days, excluding those with sickness absence benefits or disability pensions. The IEB data also provided information on the region of employment, which represents the area in which a company is located (East Germany and West Germany). This time-varying variable was available for each person over the years. A description of the Level 1 characteristics of our sample is provided in Table 2 using the last available information (2017) from the IEB data.

Characteristics of Level 1 variables a for men (n = 1,552) and women (n = 1,786).

M mean; SD standard deviation.

* p < 0.05, ** p < 0.01, *** p < 0.001.

2.2.2 Level 2 Variables

Information about the time-invariant variable education and vocational training was assessed from the survey data in 2011 (baseline). Education and vocational achievements of the sample were grouped in: low, intermediate and high education and vocational training (see Supplementary Table S1 ). The time-invariant variable gender had missing values in the register data. Therefore, we imputed the missing data using information of the survey data. The variable was coded 0 = female and 1 = male. Also based on the survey data, we included the time-invariant variable year of birth with measurements of 1959 and 1965 in the analysis. The characteristics of the Level 2 variables are displayed in Table 1 .

Characteristics of the Level 2 variables a for men (n = 1,552) and women (n = 1,786).

2.3 Statistical Analysis

The characteristics of our sample are displayed in Table 1 and Table 2 . Statistical analyses were performed using either Cramer’s V or by unpaired two sample t -test for numeric variables. Regarding the multilevel analysis, we used a so-called growth curve analysis. It demonstrates a multilevel approach for longitudinal data that model growth or decline over time. For this purpose, all daily information in the IEB were transformed into data on a yearly basis. Level 1 (year of measurements) represents the intraindividual change with time-varying variables. Interindividual changes are determined with time-invariant variables on Level 2 (individuals). Therefore, time of measurements predictors was nested within individuals. We applied a random intercept and slope model, which assumed variations in intercept and slope of individuals over time ( Singer and Willett, 2003 ; Rabe-Hesketh and Skrondal, 2012 ; Hosoya et al., 2014 ). Besides the Level 1 and Level 2 predictors, the cross-level interaction of gender*time interaction was constituted to analyze differences in income slopes of men and women over time ( Rabe-Hesketh and Skrondal, 2012 ).

Level 1 of the two-level growth model is presented below ( Eq. (1) ). y i j measures the income trajectory y for individual i at time j . True initial income for each person is represented with β 0 i . The slope of the individual change trajectory demonstrates β i j . T I M E i j stands for the measure of assessment at time j for individual i (Level 1 predictor). The residual or random error, specific to time and the individual is demonstrated by ε i j .

Eq. 2 and 3 represent the submodels of the Level 2. Eq. 2 defines the intercept γ 00 for individual i with the intercept of z i (illustrating a Level 2 predictor) and residual in the intercept v 0 i . The slope at Level 2 is represented in Eq. 3 with γ 10 and the slope error v 1 i . The effect γ 11 provides information on the extent to which the effect of the Level 1 predictor ( T I M E i j ) varies depending on the Level 2 predictor ( z i ).

To test our hypotheses, we calculated the influence of different variables with adjusting various predictors stepwise into the multilevel analysis. First, we estimated an unconditional means model which describes the outcome variation only and not its change over time (model 1). The next preliminary step was calculating the intraclass correlation coefficient (ICC) of this model 1. It identifies and partitions the two components: within- and between-person variance. The ICC estimates the proportion of total variation of the outcome y that lies between persons ( Singer and Willett, 2003 ). In the next model (model 2), we calculated an unconditional growth curve model which included time as predictor on Level 1. In model 3, the GCA was controlled for gender and time as well as the interaction of both variables. Model 4 was additionally adjusted for human capital determinant: education and vocational training, and working time. The GCA of model 5 was controlled for occupational status. The last model included year of birth, number of episodes of marginal work, duration of unemployment and region of employment (model 6 – fully adjusted model).

In Table 5 , the indices of the Akaike’s Information Criterion (AIC) were used to compare models and explore the best model fit ( Singer and Willett, 2003 ; Rabe-Hesketh and Skrondal, 2012 ). The statistical analyses were performed with IBM SPSS 25.

Goodness-of-fit statistics of the GCA.

AIC Akaike’s Information Criterion.

3.1 Descriptive

Characteristics of Level 2 variables stratified by gender are displayed in Table 1 . 1,552 men and 1,786 women were included in the analyses. It is observed that women significantly differ from men in education and vocational training. Women were less likely than men to have both low and high levels of education and vocational training.

The characteristics of Level 1 variable are represented in Table 2 . Men and women differ significantly in their occupational positions. Also, men had a higher average daily income than women. Part-time jobs are more likely among women as compared to men, who are more likely to be represented in full-time jobs. Moreover, the numbers of episodes of marginal work differ significantly between men and women.

Figure 2 displays the income trajectories over the observation period (1993–2017) among men and women. In 24 years, average daily income per year increased for both. However, men have a higher average income over their life course than women. Over time, a steeper growth of the average daily income per year can be observed for men, compared to the income development of women.

An external file that holds a picture, illustration, etc.
Object name is fsoc-06-815376-g002.jpg

Income trajectories of men and women.

3.2 Growth Curve Analysis

Results of the multilevel analyses with average daily income per year as dependent variable concerning H1 are presented in Table 3 . The ICC of the unconditional means model (model 1) demonstrates that 74% of the total variability in income can be attributed to differences between persons and 26% to the differences within persons. Adding time as a predictor in the multilevel analysis (model 2), the variance components on Level 1 become smaller. Concluding that time accounts for 68% (from 607.34 to 197.12) of the within-person variance in average income. On Level 2, time explains 40% of the variance between persons (interindividual). However, there can be still found significant unexplained results in both levels which suggests that predictors on both levels should be further included. The GCA in model 3 was adjusted for gender (with women as reference group) and the interaction gender*time. The results show a significant effect of gender on the average income over time. The starting place (intercept) lies at 41.74€ with an incremental growth per year of 1.76€. However, regarding women as reference group, men have a higher average income. The significant interaction term also indicates different income development of men and women over time – with men having higher average income trajectory than women. As expected, no relevant change can be found in the within-person variance due to the adding of the Level 2 variable: gender. The variance on Level 2, however, become less concluding that gender accounts for 26% of the variance between persons. Overall, we can verify H1 with these results.

Growth curve models 1 to 3: Estimates of average daily income per year.

L1 = Level 1; L2 = Level 2.

Results of the GCA with average daily income per year as the dependent variable controlled by determinants of the human capital model are presented in Table 4 (model 4). In addition to the multilevel analysis of model 3, model 4 is also adjusted for: education and vocational training, and working time. The results show that the average income is found to be significantly higher for full-time workers and higher educated. There is a social gradient for income regarding education and vocational training – with decreasing levels of education, the income also reduces. People who are working full-time have a higher average income than those who work part-time or full- and part-time. The effect of gender is found to be significant with less average income of women compared to men. Moreover, the income development of men and women over time is still significantly different, with more income growth over time for men than for women. The results of the variance components demonstrate that human capital determinants are explaining 16% of the variance within person and 25% of the variance between persons. However, on both levels there can be still found significant variance and additional variables need to be considered. Our hypothesis 2 can be partially confirmed.

Growth curve models 4 to 6: Estimates of average daily income per year.

Model 5 ( Table 4 ) embeds occupational status to the analysis to find out the contribution of the occupational positions on the earning differences of men and women. Significant differences in the daily average income for each occupational group can be identified. The reference group is represented with the highest occupational group ‘manager’. In nearly all other occupations, manager had the highest average income, except of ‘technicians and associate professionals’. Moreover, the effects of occupational status on income are significant for all ISCO groups except for professionals. However, compared to education and vocational training, occupational status trends are less clear, and a social gradient cannot be identified. The estimated of the fixed effect of gender persists and stays the same, concluding that the occupational position of a person could not influence the effect of gender on income. The increase of income over time can be still found to be significant higher for men than for women. Moreover, including the Level 1 variable, occupational position cannot explain a substantial part of the within-person variance. We can identify occupational positions as significant predictor of the income, but a relevant contribution to explain the GPG cannot be observed. Therefore, we cannot approve hypothesis 3.

The results of investigating the influence of factors of the living environment are presented in Table 4 (model 6). Those, who are born earlier (1959) are found to have a higher average daily income, compared to those born in 1965. Having at least one marginal employment per year influences the average daily income negatively, as does having more unemployed days. Furthermore, average income is influenced by the region of employment, being lower in East Germany than in West Germany. The estimate of gender become a little less, but the average income and the development of income over time still substantially differs between men and women. The factors of living environment account for 10% of the variance between persons. We can only partially accept hypothesis 4.

3.3 Goodness of Fit

Table 5 displays the goodness of fit statistics for the different models of the GCA. The AIC is computed to find the best model fit. Considering the different indices of AIC, model 6 has the best fit.

4 Discussion

This study aimed to examine the income differences of men and women over their life course. We investigated how different factors can explain the GPG over time. Even after extensive control for human capital determinants, occupational factors and various factors of the living environment, the effect of gender on the average daily income persisted. Moreover, the average income development was found to be higher for men compared to women.

The accumulation of inequalities over time can be seen in the difference between men’s and women’s wages. Over the period of 24 years, our results showed that the income development of men increased more compared to women – the GPG widened with time. Due to the availability of life course data, we could consider cumulative disadvantages regarding the earnings of men and women. Moreover, the results of the variance componence also showed the importance of including time to explain the GPG ( Table 3 , model 2). Therefore, we can verify our first hypothesis. The steeper incline of income for men compared to women over time substantiates the presence of GPG in Germany. Goldin (2014) also found a small GPG when people enter the labor market and a widening gap with age. Our findings are also in line with information from the Federal Statistical Office (2016) and Eurostat (2021a) who used representative data and not use cohort specific data of the German working population.

The second hypothesis assumed that human capital determinants (education and work experience) can explain the GPG. The effects of education and vocational training on daily average income significantly differed in our results ( Table 4 , model 4). Findings of Bovens and Wille (2017) also demonstrated that the level of a person’s education determines the income level. Our results also support the previous finding, that education is most often a requirement for the achievement of a certain desired financial situation ( Du Prel et al., 2019 ). Our results also showed that the average income significantly differed considering working time. Full-time workers had higher average income, while men were more likely to work full-time compared to women. Earlier research also showed that part-time work was more frequent among women than among men ( Boll and Leppin, 2015 ; Matteazzi et al., 2018 ; Eurostat, 2021a ). After adjusting for human capital determinants, the unexplained variance was still substantial and the effect of gender remained significant. Hence, H2 can only partially be accepted.

In our third hypothesis, we assumed that the gender differences in occupational position can explain the GPG. We demonstrated that the average income differed according to the occupational status of a person. This is in line with previous findings of Blau and Kahn (2001) who assumed occupation to be an important factor of the financial status of a person. After controlling for occupational status, the effect of gender could still be found to be significant. We cannot accept H3 and therefore cannot confirm results of earlier studies ( Blau and Kahn, 2007 ; Boll et al., 2017 ). In contrast to the results of education and vocational training, we did not observe a clear social gradient of occupational status and income in our analyses. One explanation could be the classification of the occupational status. The ISCO classification is structured hierarchically on four levels. The construction is based on skill level and specialization. In our study, we used the major group structure (level one) with 10 different occupational groups. Using ISCO at level one (major groups) cannot be interpreted as a strict hierarchical order of occupations; instead, it can be considered more of a summary information on occupational status regarding skill level. Moreover, we were only able to generate the major groups of the register data and therefore cannot provide more detailed information about the occupational status. However, ISCO is applied in our study for the purpose of international comparability ( International Labour Office, 2012 ).

The accumulation of disadvantages over time could also be found in our results after controlling for factors such as unemployment or marginal employment. Having (at least one) marginal employment per year influenced the income negatively. We found that discontinuities in employment and interruptions such as unemployment also had a significant negative effect. Average income decreased when the number of days per year of unemployment increased. Furthermore, controlling for the region of employment, people in East Germany had lower daily average income compared to those in West Germany. Regarding the difference between men and women, previous findings also suggested a wider GPG in West Germany than in East Germany ( Federal Statistical Office, 2016 ). However, the GPG in West and East Germany should be compared with caution due to different societal models in the past. Moreover, different labour market characteristics and different infrastructure of childcare facilities lead to a lower GPG in East Germany than in West Germany ( Federal Ministry for Family Affairs, Senior Citizens, Women and Youth, 2020 ). The year of birth was included to eliminate cohort effects, and it was found to influence average income. Men and women born earlier (1959) had higher income than those born in 1965. The fact that they are older and have worked longer in the labor market could be an explanation. The significant effects of gender on the average income and the income trajectories remained after adjusting for these factors. Therefore, hypothesis 4 can only be partially confirmed.

4.1 Strengths and Limitations

Our study has limitations concerning the generalizability of our results due to the database. Our sample includes employees of two age groups (1959 and 1965) in Germany, who are subjected to social security. Thus, the generalizability or extension of the findings to self-employed people, civil servants and other age groups may be limited. The GPG differs considerably between the EU members. The GPG in Germany is one of the widest in the EU, with 19.2% in 2019. Netherlands and Sweden are two EU countries with similar employment rates, but still have lower GPGs with 14.6 and 11.8% ( Eurostat, 2021a ). Efforts to promote gender equality in politics in Germany are limited compared to other EU members. Women are still underrepresented, not only in the political but also in the economic area. Moreover family policy needs to further support full-time employment of women and working mothers ( Andersson et al., 2014 ; Botsch, 2015 ). Therefore, the transfer of our results to other countries should be made with caution. There are some other limitations regarding the IEB data. Information about occupational careers exist from the beginning (1975), but only for persons born in West Germany. Information about people born in East Germany was not available for the period before 1993. Hence, to counteract the systematic bias, we defined 1993 as a cut-off point, when people were either 28 or 34 years old. Additionally, we adjusted our analyses for the region of employment (East/West Germany). Furthermore, information about the marginal work and duration of unemployment were only available from 1999 onwards. Due to the composition of the IEB data, we could not include people who were unwell for long periods of time. Only persons who were unable to work for less than 42 days were included in the data. Regarding the income development of women in our study, Figure 2 shows a decrease between 1997 and 1999. Being in their thirties (32–40 years) and having to raise children at that time can be one possible explanation. Regarding family formation, in 1993 the average age of a mother at birth was 28.4 years ( Federal Statistical Office, 2020 ). At the beginning of our analysis (1993) the average age of both cohorts in the study (28 years; 34 years) is similar to the average age of a mother during that time – especially for the younger cohort. However, our data do not cover information about persons on parental leave or homemakers. Due to the lack of information in the IEB data, implications of family life contributing to a difference in pay for women cannot be included in our analysis. Furthermore, Joshi et al. (2020) could not find a GPG only for parents but also for men and women without children. Therefore, the issue of wage differences between men and women is relevant either way.

Besides these restrictions, our study exhibits several strengths. The study population is highly representative for German employees subject to social insurance contributions, born in 1959 and 1965 and is, therefore, characterized by a high external validity ( Schröder et al., 2013 ). Moreover, the IEB data itself and the nature of the data that the IEB provides, are one important strength of this study. The register data is not subject to possible recall bias. This is a relevant advantage compared to most previous studies that used self-reported data. In addition, the availability of information on a daily basis regarding many variables can be seen as another strength of the study. As a result, income trajectories could be calculated more precisely, compared to many previous studies. Furthermore, in Germany, income is used to calculate the amount of social benefit accruing to each person and therefore represents highly valid information. A further major advantage of our study is represented in our long observation period of 24 years. Only a few studies have applied the life course approach to examine the complexity of the GPG. Our life course data contain various information about employment characteristics which are relevant for the GPG and of high data quality.

Our results showed, even after controlling for relevant factors, that the GPG still persisted. There exist some explanations of the GPG regarding different behaviors of men and women in wage negotiations, which further influence different income developments ( Boll and Leppin, 2015 ). Also, structural disadvantages in the labor market can be a factor explaining the GPG. Individual behavior and labor market structures are not represented in our register data. We can only extract information that is relevant for social security contribution. Nonetheless, previous research of Blau and Kahn (2017) found a larger and more slowly decreasing GPG in the US at the top compared to other levels of the wage distribution. This ‘glass ceiling effect’ describes the reduced career opportunities of women compared to men due to frequent denial of access to leadership positions. Consequently, gender inequality can be found to be greater at the top of the wage distribution. Among European countries, previous studies have found this “glass ceiling effect” in Germany as well ( Arulampalam et al., 2005 ; Boll and Leppin, 2015 ; Huffman et al., 2017 ). However, recent results of Boll et al. (2017) could not confirm the glass ceiling effect in West Germany, thus further research is needed.

5 Conclusion

The gender pay inequalities in the German labor market from a life course perspective exist. Our results demonstrated that human capital determinants continue to be important in explaining the GPG over time. Furthermore, factors of working disadvantages such as marginal work or unemployment are important when trying to explain the income differences of men and women. For further research the availability of more work data over the life course with matching individual data would help to understand the GPG even better.

Acknowledgments

We gratefully acknowledge the support of two staff members of the University Ulm. We would like to thank Gaurav Berry for his support of the data preparation and Diego Montano for his feedback on the statistical analysis.

Data Availability Statement

Ethics statement.

The studies involving human participants were reviewed and approved by the ethics commission of the University of Wuppertal. The patients/participants provided their written informed consent to participate in this study.

Author Contributions

LT substantially contributed to the statistical analysis and interpretation of the data, and wrote the manuscript. HB discussed the results and provided critical comments on the manuscript. RP contributed to the obtaining of the funding, interpreting the data, and critically revised the manuscript for important aspects. All authors read and approved the final manuscript.

This work was supported by the German Research Foundation (DFG), grant number 393153877.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fsoc.2021.815376/full#supplementary-material .

  • Achatz J., Gartner H., Glück T. (2005). Bonus Oder Bias? Koelner Z.Soziol.u.Soz.Psychol 57 , 466–493. 10.1007/s11577-005-0185-6 [ CrossRef ] [ Google Scholar ]
  • Aisenbrey S., Bruckner H. (2008). Occupational Aspirations and the Gender Gap in Wages . Eur. Sociological Rev. 24 , 633–649. 10.1093/esr/jcn024 [ CrossRef ] [ Google Scholar ]
  • Aisenbrey S., Fasang A. (2017). The Interplay of Work and Family Trajectories over the Life Course: Germany and the United States in Comparison . Am. J. Sociol. 122 , 1448–1484. 10.1086/691128 [ CrossRef ] [ Google Scholar ]
  • Andersson G., Kreyenfeld M., Mika T. (2014). Welfare State Context, Female Labour-Market Attachment and Childbearing in Germany and Denmark . J. Pop Res. 31 , 287–316. 10.1007/s12546-014-9135-3 [ CrossRef ] [ Google Scholar ]
  • Arulampalam W., Booth A. L., Bryan M. L. (2005). Is There a Glass Ceiling over Europe? Exploring the Gender Pay gap across the Wages Distribution . Colchester, EX: ISER Working Paper Series, 25. [ Google Scholar ]
  • Azmat G., Güell M., Manning A. (2006). Gender Gaps in Unemployment Rates in OECD Countries . J. Labor Econ. 24 , 1–37. 10.1086/497817 [ CrossRef ] [ Google Scholar ]
  • Barone C., Schizzerotto A. (2011). Introduction . Eur. Societies 13 , 331–345. 10.1080/14616696.2011.568248 [ CrossRef ] [ Google Scholar ]
  • Blau F. D., Kahn L. M. (2007). The Gender Pay Gap . AMP 21 , 7–23. 10.5465/amp.2007.24286161 [ CrossRef ] [ Google Scholar ]
  • Blau F. D., Kahn L. M. (2017). The Gender Wage Gap: Extent, Trends, and Explanations . J. Econ. Lit. 55 , 789–865. 10.1257/jel.20160995 [ CrossRef ] [ Google Scholar ]
  • Blau F., Kahn L. (2001). Understanding International Differences in the Gender Pay Gap . Ithaca, NY: NBER Working Paper 8200. Available at: https://www.nber.org/papers/w8200 (Accessed November 30, 2021). [ Google Scholar ]
  • Boll C., Jahn M., Lagemann A. (2017). The Gender Lifetime Earnings gap: Exploring Gendered Pay from the Life Course Perspective . Hamburg, Germany: HWWI Research Paper, 179. [ Google Scholar ]
  • Boll C., Leppin J. S. (2015). Die geschlechtsspezifische Lohnlücke in Deutschland: Umfang, Ursachen und Interpretation . Wirtschaftsdienst 95 , 249–254. 10.1007/s10273-015-1814-y [ CrossRef ] [ Google Scholar ]
  • Börsch-Supan A., Brandt M., Hunkler C., Kneip T., Korbmacher J., Malter F., et al. (2013). Data Resource Profile: the Survey of Health, Ageing and Retirement in Europe (SHARE) . Int. J. Epidemiol. 42 , 992–1001. 10.1093/ije/dyt088 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Botsch E. (2015). The Policy on Gender Equality in Germany . Available at: https://www.europarl.europa.eu/RegData/etudes/IDAN/2015/510025/IPOL_IDA(2015)510025_EN.pdf (Accessed November 25, 2020).
  • Bovens M., Wille A. (2017). Education as a Cleavage . Oxford University Press. [ Google Scholar ]
  • Broughton A., Green M., Rickard C., Swift S., Eichhorst W., Tobsch V., et al. (2016). Precarious Employment in Europe: Patterns, Trends and Policy Strategy . Europarl. Available at: https://www.europarl.europa.eu/RegData/etudes/STUD/2016/587285/IPOL_STU(2016)587285_EN.pdf . [ Google Scholar ]
  • Brynin M., Perales F. (2016). Gender Wage Inequality: The De-gendering of the Occupational Structure . Eur. Sociol. Rev. 32 , 162–174. 10.1093/esr/jcv092 [ CrossRef ] [ Google Scholar ]
  • Dannefer D. (2003). Cumulative Advantage/disadvantage and the Life Course: Cross-Fertilizing Age and Social Science Theory . J. Gerontol. B Psychol. Sci. Soc. Sci. 58 , S327–S337. 10.1093/geronb/58.6.s327 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Doren C., Lin K. Y. (2019). Diverging Trajectories or Parallel Pathways? an Intersectional and Life Course Approach to the Gender Earnings Gap by Race and Education . Socius 5 , 237802311987381–23. 10.1177/2378023119873816 [ CrossRef ] [ Google Scholar ]
  • Du Prel J. B., Schrettenbrunner C., Hasselhorn H. M. (2019). Vertical and Horizontal Social Inequality and Motivation for Early Retirement . Z. Gerontol. Geriatr. 52 , 3–13. 10.1007/s00391-018-1450-4 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Eurostat (2021a). Statistics Explained: Gender Pay gap Statistics . Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Gender_pay_gap_statistics (Accessed December 01, 2021).
  • Eurostat (2021b). Statistics Explained: Gender Statistics . Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Gender_statistics#Earnings (Accessed November 30, 2021).
  • Federal Agency for Civic Education (2021). Sozialversicherung [Social Insurance] . Available at: https://www.bpb.de/nachschlagen/lexika/das-junge-politik-lexikon/321149/sozialversicherung (Accessed November 30, 2021).
  • Federal Ministry for Family Affairs, Senior Citizens, Women and Youth (2020). The Road to Equal Pay for Women and Men . Available at: https://www.bmfsfj.de/bmfsfj/meta/en/publications-en/the-road-to-equal-pay-for-women-and-men-161370 (Accessed December 01, 2021).
  • Federal Statistical Office (2020). Durchschnittliches Alter der Mutter bei der Geburt ihrer lebend geborenen Kinder: Deutschland, Jahre, Familienstand der Eltern [Average age of the mother at the birth of her children born alive: Germany, years, marital status of parents] . Available at: https://www-genesis.destatis.de/genesis/online (Accessed March 17, 2021).
  • Federal Statistical Office (2021). Three in Four Mothers in Germany Were in Employment in 2019 . Available at: https://www.destatis.de/EN/Press/2021/03/PE21_N017_13.html (Accessed March 16, 2021).
  • Federal Statistical Office (2016). Unbereinigter Verdienstunterschied nach persönlichen Merkmalen im Jahr 2014 [Gender Pay Gap by personal characteristics in 2014 (unadjusted)] . Available at: https://www.destatis.de/DE/Themen/Arbeit/Verdienste/Verdienste-Verdienstunterschiede/Tabellen/gpg-persoenlich.html (Accessed March 16, 2020).
  • Goldin C. (2014). A Grand Gender Convergence: Its Last Chapter . Am. Econ. Rev. 104 , 1091–1119. 10.1257/aer.104.4.1091 [ CrossRef ] [ Google Scholar ]
  • Grybaitė V. (2006). Analysis of Theoretical Approaches to Gender Pay gap . J. Business Econ. Manag. 7 , 85–91. 10.3846/16111699.2006.9636127 [ CrossRef ] [ Google Scholar ]
  • Härkönen J., Manzoni A., Bihagen E. (2016). Gender Inequalities in Occupational Prestige across the Working Life: An Analysis of the Careers of West Germans and Swedes Born from the 1920s to the 1970s . Adv. Life course Res. 29 , 41–51. 10.1016/j.alcr.2016.01.001 [ CrossRef ] [ Google Scholar ]
  • Hasselhorn H. M., Peter R., Rauch A., Schröder H., Swart E., Bender S., et al. (2014). Cohort Profile: the lidA Cohort Study-A German Cohort Study on Work, Age, Health and Work Participation . Int. J. Epidemiol. 43 , 1736–49. 10.1093/ije/dyu021 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hasselhorn H. M. (2020). “ Social Inequality in the Transition from Work to Retirement ,” in Handbook of Socioeconomic Determinants of Occupational Health . Editor Theorell T. (Cham: Springer International Publishing; ), 1–26. 10.1007/978-3-030-05031-3_32-1 [ CrossRef ] [ Google Scholar ]
  • Hosoya G., Koch T., Eid M. (2014). Längsschnittdaten und Mehrebenenanalyse . Köln Z. Soziol 66 , 189–218. 10.1007/s11577-014-0262-9 [ CrossRef ] [ Google Scholar ]
  • Huffman M. L., King J., Reichelt M. (2017). Equality for Whom? Organizational Policies and the Gender Gap across the German Earnings Distribution . ILR Rev. 70 , 16–41. 10.1177/0019793916673974 [ CrossRef ] [ Google Scholar ]
  • International Labour Office (2012). International Standard Classification of Occupations: ISCO-08 . Geneva: International Labour Organization. [ Google Scholar ]
  • Jalovaara M., Fasang A. E. (2019). Family Life Courses, Gender, and Mid-life Earnings . Eur. Sociol. Rev. 36 , 159–178. 10.1093/esr/jcz057 [ CrossRef ] [ Google Scholar ]
  • Joshi H., Bryson A., Wilkinson D., Ward K. (2020). The Gender gap in Wages over the Life Course: Evidence from a British Cohort Born in 1958 . Gend. Work Organ. 28 , 397–415. 10.1111/gwao.12580 [ CrossRef ] [ Google Scholar ]
  • Lips H. M. (2013). The Gender Pay Gap: Challenging the Rationalizations. Perceived Equity, Discrimination, and the Limits of Human Capital Models . Sex Roles 68 , 169–185. 10.1007/s11199-012-0165-z [ CrossRef ] [ Google Scholar ]
  • Manzoni A., Harkonen J., Mayer K. U. (2014). Moving on? A Growth-Curve Analysis of Occupational Attainment and Career Progression Patterns in West Germany . Social Forces 92 , 1285–1312. 10.1093/sf/sou002 [ CrossRef ] [ Google Scholar ]
  • Matteazzi E., Pailhé A., Solaz A. (2018). Part-time Employment, the Gender Wage gap and the Role of Wage-Setting Institutions: Evidence from 11 European Countries . Eur. J. Ind. Relations 24 , 221–241. 10.1177/0959680117738857 [ CrossRef ] [ Google Scholar ]
  • Mincer J., Polachek S. (1974). Family Investments in Human Capital: Earnings of Women . J. Polit. Economy 82 , S76–S108. 10.1086/260293 [ CrossRef ] [ Google Scholar ]
  • Monti H., Stinson M., Zehr L. (2020). How Long Do Early Career Decisions Follow Women? the Impact of Employer History on the Gender Wage Gap . J. Labor Res. 41 , 189–232. 10.1007/s12122-020-09300-9 [ CrossRef ] [ Google Scholar ]
  • Moore T. S. (2018). Occupational Career Change and Gender Wage Inequality . Work and Occupations 45 , 82–121. 10.1177/0730888417742691 [ CrossRef ] [ Google Scholar ]
  • OECD (2021). OECD Statistics . Available at: http://stats.oecd.org/ (Accessed March 16, 2021).
  • Petersen T., Morgan L. A. (1995). Separate and Unequal: Occupation-Establishment Sex Segregation and the Gender Wage Gap . Am. J. Sociol. 101 , 329–365. 10.1086/230727 [ CrossRef ] [ Google Scholar ]
  • Polachek S. W. (1981). Occupational Self-Selection: A Human Capital Approach to Sex Differences in Occupational Structure . Rev. Econ. Stat. 63 , 60. 10.2307/1924218 [ CrossRef ] [ Google Scholar ]
  • Ponthieux S., Meurs D. (2015). “ Gender Inequality ,” in Handbook of Income Distribution: Volume 2 . Editors Atkinson A. B., Bourguignon F. (Burlington: Elsevier Science; ), 981–1146. 10.1016/b978-0-444-59428-0.00013-8 [ CrossRef ] [ Google Scholar ]
  • Rabe-Hesketh S., Skrondal A. (2012). Multilevel and Longitudinal Modeling Using Stata . 3rd ed.. College Station, Tex: Stata Press. [ Google Scholar ]
  • Radl J. (2013). Labour Market Exit and Social Stratification in Western Europe: The Effects of Social Class and Gender on the Timing of Retirement . Eur. Sociological Rev. 29 , 654–668. 10.1093/esr/jcs045 [ CrossRef ] [ Google Scholar ]
  • Sackmann R. (2018). “ Demographie als Herausforderung für die Soziologie ,” in Handbuch Soziologie des Alter(n)s . Editors Schroeter K. R., Vogel C., Künemund H. (Wiesbaden: Springer VS; ), 1–23. 10.1007/978-3-658-09630-4_5-1 [ CrossRef ] [ Google Scholar ]
  • Schröder H., Kersting A., Gilberg R., Steinwede J. (2013). Methodenbericht zur Haupterhebung lidA - leben in der Arbeit [Methodology Report of the main survey of lidA] . Available at: http://doku.iab.de/fdz/reporte/2013/MR_01-13.pdf (Accessed March 15, 2020).
  • Sierminska E. M., Frick J. R., Grabka M. M. (2010). Examining the Gender Wealth gap . Oxford Econ. Pap. 62 , 669–690. 10.1093/oep/gpq007 [ CrossRef ] [ Google Scholar ]
  • Singer J. D., Willett J. B. (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence . Oxford: Oxford Univ. Press. [ Google Scholar ]
  • Visser M., Gesthuizen M., Kraaykamp G., Wolbers M. H. J. (2016). Inequality Among Older Workers in the Netherlands: A Life Course and Social Stratification Perspective on Early Retirement . Eur. Sociol. Rev. 32 , 370–382. 10.1093/esr/jcw013 [ CrossRef ] [ Google Scholar ]

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 24 November 2022

Within-job gender pay inequality in 15 countries

  • Andrew M. Penner 1 ,
  • Trond Petersen 2 ,
  • Are Skeie Hermansen 3 , 4 ,
  • Anthony Rainey 5 ,
  • István Boza 6 ,
  • Marta M. Elvira 7 ,
  • Olivier Godechot 8 , 9 ,
  • Martin Hällsten 10 ,
  • Lasse Folke Henriksen 11 ,
  • Feng Hou 12 ,
  • Aleksandra Kanjuo Mrčela 13 ,
  • Joe King 14   na1 ,
  • Naomi Kodama 14 ,
  • Tali Kristal 15 ,
  • Alena Křížková 16 ,
  • Zoltán Lippényi 17 ,
  • Silvia Maja Melzer 14   na1 ,
  • Eunmi Mun 18 ,
  • Paula Apascaritei 14   na1 ,
  • Dustin Avent-Holt 19 ,
  • Nina Bandelj 1 ,
  • Gergely Hajdu 20 ,
  • Jiwook Jung 18 ,
  • Andreja Poje 13 ,
  • Halil Sabanci 21 ,
  • Mirna Safi 8 ,
  • Matthew Soener 22 ,
  • Donald Tomaskovic-Devey 5 &
  • Zaibu Tufail 1  

Nature Human Behaviour volume  7 ,  pages 184–189 ( 2023 ) Cite this article

30k Accesses

8 Citations

414 Altmetric

Metrics details

  • Social policy

An Author Correction to this article was published on 31 January 2023

This article has been updated

Extant research on the gender pay gap suggests that men and women who do the same work for the same employer receive similar pay, so that processes sorting people into jobs are thought to account for the vast majority of the pay gap. Data that can identify women and men who do the same work for the same employer are rare, and research informing this crucial aspect of gender differences in pay is several decades old and from a limited number of countries. Here, using recent linked employer–employee data from 15 countries, we show that the processes sorting people into different jobs account for substantially less of the gender pay differences than was previously believed and that within-job pay differences remain consequential.

Despite great advances in gender equality, women earn less than men in all advanced industrialized countries. These gender gaps are strongly related to the occupations and establishments in which women and men work. Germinal research highlights that, although there are substantial differences in the overall wages men and women receive, women and men who do the same work for the same employer receive very similar wages 1 , 2 , 3 . The processes involved in sorting women and men into different jobs, and particularly into differentially remunerated male- and female-dominated occupations, are thus viewed as central to understanding gender pay inequality 4 , 5 , 6 .

This understanding of the gender gap has far-reaching policy implications. If there are sizeable differences between the pay that women and men receive when they do the same work for the same employer (that is, within-job inequality), policies mandating equal pay have an important role to play in creating gender equality in the labour market. If, however, differences arise overwhelmingly through sorting women and men into different jobs, policies should focus on the organizational hiring and promotion practices that match people to jobs, as well as on broader societal views regarding whose work is defined as valuable 7 , 8 , 9 .

Most evidence regarding gender pay inequality comes from surveys of individuals that contain occupational data but lack good indicators of firms and jobs. Data that contain detailed occupational information and link individuals to others working for the same employer (that is, linked employer–employee data) are rarely available, so that data that can examine gender differences among those with the same occupation and employer (that is, within-job inequality) are difficult to access. The best evidence on within-job gender pay differences comes from a limited number of countries using linked employer–employee data ranging from 1980 through 1990 to examine within-job gender wage differences 1 , 2 , 3 . In this Article, we contribute to this literature by using linked employer–employee data to provide recent estimates of the levels and change in within-establishment, within-occupation and within-job differences in earnings across 15 countries: Canada, Czechia, Denmark, France, Germany, Hungary, Israel, Japan, the Netherlands, Norway, Slovenia, South Korea, Spain, Sweden and the United States. We show that although much of the gender inequality we observe is accounted for by sorting into establishments, occupations and jobs, within-job gender gaps in earnings remain an important source of differences in all 15 countries. Analyses for the six countries where we can examine the contractual hourly wage rate show that sorting is similarly important for gender differences in wages, suggesting that equal pay policies have an important role to play in creating gender pay equity.

Our core analyses focus on four sets of ordinary least squares regression models. The first model adjusts only for basic individual-level covariates, and provides our baseline estimate of the overall gender pay gap in each country. In subsequent models, we introduce a series of fixed effects so that we compare women and men working in the same establishment (model 2), the same occupation (model 3) and the same job (that is, occupation–establishment unit; model 4). Comparing the results of these four models enables us to see the degree to which gender differences in pay in any given year are accounted for by sorting across establishments, occupations and occupation–establishment units.

Table 1 presents information on gender differences in earnings in our 15 countries. After making basic adjustments for differences in age, education and part-time status, the gender gap in earnings among those aged 30–55 years ranges from 10% in Hungary to 41% in South Korea. Within-job gender gaps are smaller but still substantial, ranging from 7% in Denmark and France to 26% in Japan. Comparing the results in the first and fourth columns (basic adjustment and within-job), we see that within-job gender differences remain a substantial source of the overall earnings gaps in all of our 15 countries. As is visible in the final column, within-job differences typically account for about half of the overall gender differences that we observe in our countries, ranging from just over a third of the overall gap (Israel) to over nine-tenths of the gender earnings gap in Hungary.

The results in the second and third columns of Table 1 report within-establishment and within-occupation gender differences in earnings. Comparing these columns with the results with only basic adjustments highlights the role of sorting into establishments and occupations in creating gender pay differences. Where previous research 1 , 2 , 3 found that sorting into occupations is substantially more important for gender inequality than sorting into establishments, we find evidence that sorting into both occupations and establishments plays an important role in producing gender differences. Our findings thus not only underscore the salience of within-job differences, but also document the importance of processes that differentially sort women and men into high-paying establishments and occupations.

Figure 1 depicts how the within-job and overall gender gaps have changed from 2005 to our most recent year of data (for most countries this represents approximately 10 years; for information on the most recent year that we have data from each country, see Table 1 ). The x axis plots the average annual change in the within-job gender gap for each country, and the y axis plots each country’s average annual change in overall gender gap over this period. In most countries, both the overall gender gap and the within-job gender gap have fallen over time. However, this is not the case in the three Central and Eastern European countries. In Czechia, within-job gender differences decline, but overall gender differences in earnings increase, suggesting that gender differences in earnings in Czechia are increasingly due to processes sorting women and men into different jobs. Gender differences also increase in Hungary and Slovenia, where the increase is due not only to sorting processes, but also to an increase in within-job gender gaps. Of particular note, none of our 15 countries exhibits a decrease in the overall gender earnings gap coupled with an increase in within-job gender earnings gaps (as would be the case if egalitarian sorting processes counteracted rising within-job inequality); this suggests that the processes sorting women and men into different jobs are rarely gender egalitarian.

figure 1

CA, Canada; CZ, Czechia; DK, Denmark; DE, Germany; ES, Spain; FR, France; HU, Hungary; IL, Israel; JP, Japan; KR, South Korea; NL, the Netherlands; NO, Norway; SI, Slovenia; SE, Sweden; US, United States. The y axis represents the average annual change in the overall gender gap in earnings (accounting only for basic adjustments, and corresponding to the first column of results in Table 1 ), and the x axis reports the average annual change in the within-job gender gap in earnings (corresponding to the fourth column of results in Table 1 ). Larger positive numbers correspond to larger increases in the gender earnings gap across years, while negative numbers correspond to decreases in the gap. We use data from approximately 10 years in each country, beginning in 2005 where possible and continuing through the most recent year available (for information on the most recent year available to us in each country, see Table 1 ). In three countries (the Netherlands, South Korea and Spain), we do not have data from 2005 and so use 2006 as our initial year. See the tables presented in Supplementary Information for the underlying coefficients reporting gender differences for each year. Supplementary figures depict country-specific trends for overall, within-establishment, within-occupation and within-occupation–establishment gender differences in earnings for each country.

Given the rapid expansion of women’s rights around the world, one might expect uniform improvement in women’s pay via both reduced sorting into different jobs and lower levels of within-job inequality. The empirical record is more mixed, with nearly universal improvements in education and labour force participation, continued and sometimes even increased segregation, and little information on what happens within jobs 10 .

Our analyses of linked employer–employee data from 15 countries show that currently both within-job differences and sorting into jobs make substantial contributions to gender pay gaps. Interestingly, the trends we document highlight that sorting is increasingly important, and that within-job differences are shrinking in importance in most countries. Thus, while the conclusions drawn by previous research—that sorting accounts for the vast majority of gender differences, and within job inequality is not a substantial concern—may not accurately summarize the current state of gender pay inequality, if the trends we observe hold, they may describe our future. In the current context, however, our findings suggest that policies focusing on equal pay for equal work and policies attending to hiring, promotion and other job-sorting processes are both vital to establishing gender equality in the labour market.

Limitations

Large-scale comparative analyses contain numerous challenges around data harmonization and ensuring that analytic decisions that are appropriate in some contexts are not problematic in others. Although we sought to ensure that the analyses conducted in each country are comparable, factors like parental leave policies, the availability and prevalence of part-time work, and the relevance of occupations and firms differ across our 15 countries. These differences necessarily mean that the comparisons we make across countries involve comparing contexts with different gender regimes and where paid work is organized very differently. Despite these limitations, we believe that these comparisons are informative, and in our Supplementary Information we report results from analyses where we alter variable definitions, model specifications and sample definitions, showing that the results we present here are remarkably robust.

This study uses linked employer–employee data (that is, data that link individual employees to specific employers) from 15 countries to investigate the extent to which the gender pay gap arises from women and men receiving different pay when doing the same work for the same employer (as opposed to from processes sorting women and men into different occupations and establishments). By allowing us to compare individuals to others working for the same employer, the linked employer–employee data that we use provide important insights into inequality. Below we provide information on our modelling strategy for our core analyses, and we summarize the data available in each of our 15 countries in Table 2 . More information on the data used for each country and results from country-specific robustness checks are included in Supplementary Information , which also presents country-specific results on changes over time, providing a sense of each country’s trends in gender inequality at the overall, establishment, occupation and job (that is, occupation–establishment) levels.

As noted above, our core analyses focus on four sets of ordinary least squares regression models. Our first model adjusts only for basic individual-level covariates, and provides our baseline estimate of the overall gender pay gap in each country. In subsequent models we compare only women and men who work in the same establishment (model 2), only women and men who work in the same occupation (model 3) and only women and men who work in the same job (that is, occupation-establishment unit; model 4). We estimate these models separately by year for each country, allowing us to examine country-specific trends in these gender differences.

The equations estimated for our core models follow the same general form, using four different specifications:

where the subscripts represent i for individuals (or for each employment spell of an individual, depending on the country), f for full-time versus part-time status, o for occupations, e for establishments and t for years. The dependent variable is the logarithm of earnings (ln earnings it ) for individual (or employment spell) i in year t , and the independent variables are collected in the vector x it , which includes a constant, the gender, age and age-squared of individual i , and a series of indicator variables for the education of individual i (except in countries where information on education was not available).

To address concerns regarding the comparability of full-time versus part-time workers, we consider full-time versus part-time status a defining characteristic of a job and include this axis in constructing fixed effects for all of our core models. Thus, model 1 includes the term η ft , a fixed effect (that is, indicator variable) for full-time versus part-time work, so that this basic adjustment model adjusts for age, age-squared, education and full-time versus part-time work. Model 2 includes the covariates in x it (age, age-squared and education), as well as the fixed effects η eft representing the unique units formed by combining the establishment and full-time versus part-time indicators. Model 2 thus provides estimates of the gender gap obtained from comparing women and men who work in the same establishment; for each establishment it can be thought of as estimating the gender gap separately for full-time workers and part-time workers and then taking a weighted average of these two gender gaps across all establishments. Models 3 and 4 are analogous to model 2, but contain the fixed effects η oft and η oeft that refer respectively to the unique units formed by combining full-time versus part-time status with either occupation ( η oft ) or occupation–establishment units ( η oeft ). The analytic sample for each model is restricted to gender-integrated fixed effect units. The subscripts to the θ parameters indicate that these are different coefficients, pertaining to different levels, basic adjustments ( B ), establishment ( E ), occupation ( O ) and occupation–establishment ( OE ).

We use the natural log of earnings as our dependent variable. Following standard conventions, these coefficients are interpreted as the relative difference between the average female and male earnings, but more formally our estimates refer to the difference in relative geometric means for unlogged earnings (which is the absolute difference in the arithmetic means of logged earnings). For an extended discussion of the interpretation of such coefficients, see Petersen 11 .

Data were analysed using STATA versions 14–17 and SAS version 9.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

This paper uses restricted-access data from 15 different countries. As described in Supplementary Information , the data underlying our analyses in each country can be accessed by receiving permissions from the relevant data owners, including Statistics Canada; the Ministry of Labor and Social Affairs of the Czech Republic; Statistics Denmark; the French Comité du Secret Statistique; the German Institute for Employment Research; the Databank of the Centre for Economic and Regional Studies in Hungary; Israel’s Central Bureau of Statistics (CBS); the Japanese Ministry of Health, Labour and Welfare; the Central Bureau of Statistics of the Netherlands; Statistics Norway; the Slovenian Statistical Office; Statistics Korea; the Ministry of Labor, Migration and Social Security of Spain; Statistics Sweden; and the US Census Bureau.

Change history

31 january 2023.

A Correction to this paper has been published: https://doi.org/10.1038/s41562-023-01523-x

Petersen, T. & Morgan, L. A. Separate and unequal: occupation–establishment sex segregation and the gender wage gap. Am. J. Soc. 101 , 329–367 (1995).

Article   Google Scholar  

Meyersson Milgrom, E. M., Petersen, T. & Snartland, V. Equal pay for equal work? Evidence from Sweden and a comparison with Norway and the US. Scand. J. Econ. 103 , 559–583 (2001).

Petersen, T., Snartland, V., Becken, L.-E. & Olsen, K. Modesta Within-job wage discrimination and the gender wage gap: the case of Norway. Eur. Soc. Rev. 13 , 199–213 (1997).

Blau, F. D. & Kahn, L. M. The gender wage gap: extent, trends, and explanations. J. Econ. Lit. 55 , 789–865 (2017).

England, P., Levine, A. & Mishel, E. Progress toward gender equality in the United States has slowed or stalled. Proc. Natl Acad. Sci. USA 117 , 6990–6997 (2020).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Reskin, B. F. and Roos, P. A. Job Queues, Gender Queues: Explaining Women’s Inroads into Male Occupations (Temple Univ. Press, 1990).

England, P. Comparable Worth: Theories and Evidence (Transaction Publishers, 1992).

Fernandez, R. M. & Lourdes Sosa, M. Gendering the job: networks and recruitment at a call center. Am. J. Soc. 111 , 859–904 (2005).

Petersen, T. & Saporta, I. The opportunity structure for discrimination. Am. J. Soc. 109 , 852–901 (2004).

Charles, M. A world of difference: international trends in women’s economic status. Ann. Rev. Soc. 37 , 355–371 (2011).

Petersen, T. Multiplicative models for continuous dependent variables: estimation on unlogged versus logged form. Soc. Method. 47 , 113–164 (2017).

Download references

Acknowledgements

This research was supported by the National Science Foundation (Award 0525831; D.A., A.M.P. and D.T.), the Humboldt Foundation (grant number AR8227; D.T.), the Research Council of Norway (grant number 287016; A.S.H.), European Research Council ERC Starting Grant (grant number 851149; A.S.H.), the European Research Council ERC Starting Grant (grant number 677739; T.K.), the French Agence Nationale de la Recherche (grant ANR-17-CE41-0009-01; M. Safi and O.G.), the Independent Research Fund Denmark (grant number 5052-00143b; L.H.), the European Social Fund and state budget of the Czechia (grant number CZ.03.1.51/0.0/0.0/15_009/0003702; A.K.), the Czech NPO Systemic Risk Institute (LX22NPO5101; A.K.), and institutional support (RVO: 68378025; A.K.), the Spanish Ministry of Science and Innovation (grant number PID2020-118807RB-I00/AEI /10.13039/501100011033; M.E.), the Fritz Henkel Stiftung (Endowed PhD Scholarship; HS) and Swedish Forte (grant number 2015-00807; M.H.), Z.L. received support from the European Research Council ERC Advanced Grant (grant number 340045), and A.K.M. was supported by the Slovenian Research Agency (ARRS) under grant no. P5-0193. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Research on the US data was conducted by J.K. while J.K. was working for the US Census Bureau. This paper is released to inform interested parties of research and to encourage discussion. The views expressed are those of the authors and not those of the US Census Bureau. Tabular materials presented in this paper were approved for release by the US Census Bureau’s Disclosure Review Board (CBDRB-FY18-258).

Author information

Independent Researcher.

Authors and Affiliations

Department of Sociology, University of California, Irvine, Irvine, CA, USA

Andrew M. Penner, Nina Bandelj & Zaibu Tufail

Department of Sociology, University of California, Berkeley, Berkeley, CA, USA

Trond Petersen

Department of Sociology and Human Geography, University of Oslo, Oslo, Norway

Are Skeie Hermansen

Swedish Institute for Social Research, Stockholm University, Stockholm, Sweden

Department of Sociology, University of Massachusetts, Amherst, Amherst, MA, USA

Anthony Rainey & Donald Tomaskovic-Devey

Centre for Economic and Regional Studies, Budapest, Hungary

István Boza

Departments of Strategic Management and Managing People in Organizations, IESE Business School, Barcelona, Spain

Marta M. Elvira

CRIS-CNRS, Sciences Po, Paris, France

Olivier Godechot & Mirna Safi

MaxPo, Sciences Po, Paris, France

Olivier Godechot

Department of Sociology, Stockholm University, Stockholm, Sweden

Martin Hällsten

Department of Organization, Copenhagen Business School, Copenhagen, Denmark

Lasse Folke Henriksen

Statistics Canada, Ottawa, Ontario, Canada

Faculty of Social Sciences, University of Ljubljana, Ljubljana, Slovenia

Aleksandra Kanjuo Mrčela & Andreja Poje

Faculty of Economics, Meiji Gakuin University, Tokyo, Japan

Joe King, Naomi Kodama, Silvia Maja Melzer & Paula Apascaritei

Department of Sociology, University of Haifa, Haifa, Israel

Tali Kristal

Institute of Sociology, Czech Academy of Sciences, Prague, Czechia

Alena Křížková

Department of Sociology, University of Groningen, Groningen, the Netherlands

Zoltán Lippényi

School of Labor and Employment Relations, University of Illinois, Urbana-Champaign, Urbana-Champaign, IL, USA

Eunmi Mun & Jiwook Jung

Department of Social Sciences, Augusta University, Augusta, GA, USA

Dustin Avent-Holt

Department of Economics, Vienna University of Economics and Business, Vienna, Austria

Gergely Hajdu

Management Department, Frankfurt School of Finance and Management, Frankfurt, Germany

Halil Sabanci

Department of Sociology, University of Illinois, Urbana-Champaign, Urbana-Champaign, IL, USA

Matthew Soener

You can also search for this author in PubMed   Google Scholar

Contributions

A. Penner, T.P., A.S.H., A.R., I.B., M.E., O.G., M.H., L.F.H., F.H., A.K.M., J.K., N.K., T.K., A.K., Z.L., S.M.M., E.M., P.A., D.A.-H., N.B., G.H., J.J., A. Poje, H.S., M. Safi, M. Soener, D.T.-D. and Z.T. designed the analyses, interpreted the results, and wrote the paper. A.S.H. led the analyses comparing results to findings from previous work in Norway and Sweden; Z.L. led the development of weights; and I.B. and O.G. led analyses ensuring the robustness of results to the inclusion of person fixed effects. A.S.H. was responsible for conducting the Norwegian analyses; I.B. and G.H. were responsible for conducting the Hungarian analyses; M.E., H.S. and P.A. were responsible for conducting the Spanish analyses; O.G., M. Safi and M. Soener were responsible for conducting the French analyses; M.H. was responsible for conducting the Swedish analyses; L.F.H. was responsible for conducting the Danish analyses; F.H. was responsible for conducting the Canadian analyses; A.K.M. and A. Poje were responsible for conducting the Slovenian analyses; J.K. was responsible for conducting the US analyses; N.K. was responsible for conducting the Japanese analyses; T.K. was responsible for conducting the Israeli analyses; A.K. was responsible for conducting the Czech analyses; Z.L. was responsible for conducting the Dutch analyses; S.M.M. was responsible for conducting the German analyses; and E.M. and J.J. were responsible for conducting the South Korean analyses.

Corresponding author

Correspondence to Andrew M. Penner .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Human Behaviour thanks David Grusky, Maria Charles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information.

Supplementary Discussion, Tables 1–30 and Figs. 1–18.

Reporting Summary

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and Permissions

About this article

Cite this article.

Penner, A.M., Petersen, T., Hermansen, A.S. et al. Within-job gender pay inequality in 15 countries. Nat Hum Behav 7 , 184–189 (2023). https://doi.org/10.1038/s41562-022-01470-z

Download citation

Received : 15 September 2020

Accepted : 29 September 2022

Published : 24 November 2022

Issue Date : February 2023

DOI : https://doi.org/10.1038/s41562-022-01470-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Relationship between menstruation-related experiences and health-related quality of life of japanese high school students: a cross-sectional study.

  • Motoyuki Nakao
  • Yuko Ishibashi
  • Kotaro Kuwaki

BMC Women's Health (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

research paper on gender pay

IMAGES

  1. Pay Someone To Write Research Paper

    research paper on gender pay

  2. The Gender Pay Gap

    research paper on gender pay

  3. Research paper gender based violence

    research paper on gender pay

  4. Dissertation on gender pay gap

    research paper on gender pay

  5. Research paper gender pay gap

    research paper on gender pay

  6. The Immigrant Women Term Paper Example

    research paper on gender pay

VIDEO

  1. CSS Gender Studies Paper Solved MCQs Year 2017 || Objective Part

  2. B.A programme #Question paper# // Gender in the morden world

  3. Gender Equality || Part 3

  4. Analysis on Gender Studies Special CSS exam

COMMENTS

  1. How Do You Make an Acknowledgment in a Research Paper?

    To make an acknowledgement in a research paper, a writer should express thanks by using the full or professional names of the people being thanked and should specify exactly how the people being acknowledged helped.

  2. What Is a Sample Methodology in a Research Paper?

    The sample methodology in a research paper provides the information to show that the research is valid. It must tell what was done to answer the research question and how the research was done.

  3. What Is a Good Title for My Research Paper?

    The title of a research paper should outline the purpose of the research, the methods used and the overall tone of the paper. The title is important because it is the first thing that is read. It is important that the title is focused, but ...

  4. The Gender Pay Gap: Income Inequality Over Life Course

    The data are based on the German cohort study lidA (living at work), which links survey data individually with employment register data. Based

  5. The Gender Wage Gap: Extent, Trends, and Explanations

    The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers

  6. Gender pay gap in U.S. hasn't changed much in two decades

    In 2022, women earned an average of 82% of what men earned, according to a new Pew Research Center analysis of median hourly earnings of both

  7. The gender pay gap

    This research report explores the gender pay gap, which is defined as the difference between the average hourly pay of men and women. As well as looking at

  8. “Women's work” and the gender pay gap

    What this report finds: Women are paid 79 cents for every dollar paid to men—despite the fact that over the last several decades millions more

  9. The Gender Pay Gap: Income Inequality Over Life Course

    The data are based on the German cohort study lidA (living at work), which links survey data individually with employment register data. Based

  10. Understanding the gender pay gap

    While there are a number of objective elements that explain the gender pay gap, research has

  11. Within-job gender pay inequality in 15 countries

    Extant research on the gender pay gap suggests that men and women who do the same work for the same employer receive similar pay

  12. (PDF) Gender Wage Gap and Funding

    This is one of the thematic reports of the study Meta-analysis of gender and science research, a project of the. 7th RTD Framework Programme of the European

  13. (PDF) The Gender Pay Gap

    ... work with Lawrence Kahn. Iam also indebted to him for helpful. comments. This paper is part of NBER's research program in Labor Studies. Any opinions.

  14. The Gender Pay Gap: Have Women Gone as Far as They Can?

    the gender pay gap seems unlikely to vanish in the near term. For one thing