• University Home
  • Library Home
  • SOPHIA Home

Home > School of Health > Physical Therapy > DPT Research Papers

Doctor of Physical Therapy Research Papers

Research papers from 2017 2017.

A Systematic Mapping Review of Health Promotion and Well-being Concepts in Physical Therapy , Andrew Amundson, Jesse Klein, Bailey Ringold, and Aaron Theis

The Influence of Hip Strength and Core Endurance on Recurrent Patella Dislocations: A Pilot Study , Samuel Arnold, Emily Bradshaw, Anna Hansen, Jessica Knutson, and Mackenzie Newman

The Impact of Walker Style on Gait Characteristics in Non-assistive Device Dependent older Adults , Matthew Bennett, Taylor Hutchins, and Kaci Platz

The Impact of a Community based Exercise Program on Somali Immigrants Residing in Subsidized Housing in Minnesota , Kimberly Berggren, Meghan Gerardi, and Laura Mueller

Comparison of Three-Dimensional Motion of the Scapula during the Hawkins-Kennedy Test and the Sidelying Sleeper Stretch , Alyssa Buchner, Tami Buus, Brittany Evans, Kirsten Lambert, and Lisandra Scheevel

Influence of Fatigue and Anticipation on Knee Kinematics and Kinetics during a Jump-cut Maneuver , Sara Buermann, Erica Gloppen, Regan Kriechbaum, Dani Potter, and Nicole Sheehan

The Accuracy of Wireless Sensors in Detecting the leg Movements and Kicks of Young Typically Developing Infants: A Pilot Study , Bri Coulter, Julia Johnson, Molly Koch, and Christina Ramsdell

Research Papers from 2016 2016

The Effects of an On-Site Exercise Program on Health and Health Behaviors in Community Dwelling Adults Living in a Subsidized Apartment Building , Alexandra Anders, Chad McNutt, and Sarah Whitmore

Influence of Fatigue on Jump and Land Movement Patterns , Sarah Bard, Beth Anne Cooper, Kevin Kosel, Owen Runion, and Kristi Thorwick

Hip Strength and Core Endurance in Female Adolescent Runners With and Without Knee Pain , Brandon Boeck, Emily Kammerer, Lisa Kelley, Cody Misuraca, and Mitchell Peterson

Factors Impacting Adherence to a Multifactorial Fall Prevention Program - a Matter of Balance , Megan Dean, Justine Eggers, Brittany Stevens, and Gunther Wolff

Chemotherapy Induced Peripheral Neuropathy and Foot Posture in Pediatric Cancer Patients , Parker Deutz, Magdalena Hoelmer, Sarah Knilans, and Abigail Semlak

The Effect of Hip and Hamstring Pathology on Sacroiliac Joint Dysfunction: A Case Series , Sarah DuPlissis, Rachel Hedden, Nicholas Manning, Josh Patterson, and Luke Wahlstrom

Goal-directed Leg Movements and Kicks in Infants with Spina Bifida , Emily Goracke, Kelsey Jacobs, Elizabeth Pilney, and Katherine Shephard

The Role of the Physical Therapist in Health Promotion as Perceived by Patients with Neurological Pathologies: A Descriptive Study , Ariel Hansen, Gabrielle McGurran-Hanson, Kayla LeDuc, and Hannah Von Arb

Research Papers from 2015 2015

Proximal Strength and Functional Testing Applicable to Patellofemoral Instability: A Preliminary Study , Samantha Alschlager, Danielle Honnette, Katelyn Ley, Brianna Ludtke, and Kristen Reed

Recovery of Nerve Function after Treatment for Childhood Cancer , Allison Baker, Alison Bottke, Maria Leider, and Timothy Mann

The Effects of Electrical Stimulation on Chronic Wound Healing: A Systematic Review , Elena Campea, Alice Fasnacht, and Allison Kirkvold

Glenohumeral Osteoarthritis: Patient Profiles and Outcomes of Shoulder Arthroplasty , Lisa Carlson, Katie Kruger, Callie Larsen, and Kim Ruehlmann

The Effect of Conjugate Reinforcement on the Leg Movements of Infants with Spina Bifida , Sarah DeRosier, Jeremy Martin, Anna Payne, Kelly Swenson, and Elisabeth Wech

Recovery from Central Cord Syndrome: A Case Report , Katie Jacobson

Cerebral Vascular Accident Confounded by Parkinson's Disease: A Case Report , Jacqueline Moseman

Physical Therapy for Mobilization of a Patient with a Prolonged Intensive Care Unit Stay: A Case Report , Jennifer Pulscher

Physical Therapy Management of a Patient with Diffuse Pigmented Villonodular Synovitis: A Case Report , Christa Schutte

Research Papers from 2014 2014

Fairview Cancer Rehab Program Outcomes and Effectiveness: a Pilot Study , Kaeleigh Adami, Elizabeth Koch, Allie Meier, and Laura Vaughn

Core Strength Testing: Developing Normative Data for Three Clinical Tests , Alexis Anderson, Jessica Hoffman, Brent Johnson, Anna Simonson, and Laurel Urquhart

Hip Strength and Core Endurance Among Female Adolescent Runners , Jenna Batchelder, Angela Everson, Leah Paquin, and Heidi Sande

Effect of Lower Extremity Sensory Amplitude Electrical Stimulation on Motor Recovery and Function after Stroke: a Pilot Study , David Bowman, Rebecca Nelson, Kelsey Shearen, and Emily Wizykoski

Volunteering as an Occupation in African-American Women in a Rural Community , Kayla Clafton, Melissa Danielson, Danielle Glenn, and Samuel Vukov

The Influence of Age, Position, and Timing of Surgical Repair on the Kicks of Infants with Spina Bifida , Ann Engstrom, Shannon Lucken, Kayla Sis, and Sarah Wehrheim

Facilitators and Barriers to Health Promotion Perceived by Minnesota Physical Therapists Working in Outpatient Settings , Ashley Fisher, Marit Otterson, and Sarah Pitzen

Establishment of Normative Shoulder Internal Rotation Passive Range of Motion Values in the Sidelying and Semi-sidelying Positions , Alisse Indrelie, Shannon Kelly, Hugo Klaers, Tatia Nawrocki, and Michael Stelzmiller

Research Papers from 2013 2013

Core Strength Testing: Developing Normative Data for Three Clinical Tests , David Anderson, Lindsay Barthelemy, Rachel Gmach, and Breanna Posey

The Effects of Walking Poles and Training on Gait Characteristics and Fear of Falling in Community Dwelling Older Adults , Sarah Becker, Lisa Glad, Kelsie Nebelsick, and Katie Yernberg

Effects of a Therapeutic Dance Program on Balance and Quality of Life in Community Dwelling Older Adults , Krista Berger, Julie Kaminski, Lindsey Kolnik, and Jennifer Miller

Physical Therapists’ Role in Health Promotion as Perceived by the Patient: A Descriptive Study , Jessica Berglund and Erin Poepping

Findings of the Lower Extremity Dynamic Screen in Patients with Patellofemoral Pain Syndrome: A Pilot Study , Jake Foley, Meghan Grathen, Lindsey Johnson, and Elizabeth Volk

Prevention of Work-Related Shoulder and Neck Injuries: A Systematic Review , Daniel Frush, Kimberly Redlin, and Jacob Cruze

The Impact of Chemotherapy on the Neuromuscular Components of Gait , Kari Johnson, Britta Schwartzhoff, Sandy Silva, and Rina Terk

Reentry Home after Disaster Relief Work in Haiti: A Mixed Methods Study of the Reentry Process of Medical Professionals , Kelsey Leeman, Andrea Olson, Abby Rassat, and Rita White

Physical Therapy Interventions and Outcomes for a Patient Following Hospitalization for Viral Gastroenteritis and Resulting Hospital-Acquired Pneumonia: A Case Report , Rachel Lewis

Research Papers from 2012 2012

Comparison of the Proprioceptive and Motion Reduction Effects of Shoulder Braces in Individuals With and Without Anterior Shoulder Dislocations: A Pilot Study , Evan Boldt, Marci Burg, Leah Jackson, and Lana Prokop

Risk Factors for Patellofemoral Pain Syndrome , Scott Darling, Hannah Finsaas, Andrea Johnson, Ashley Takekawa, and Elizabeth Wallner

Experiences of Physical Therapists who Participate in Disaster Relief Work in Haiti , Erin Faanes, Andrea Guggenbuehl, Ellen Johnston, Katie Larsen, and Crystal Stien

The Sensitivity of Infants with Spina Bifida to Sensory Information , Katie Gulsvig, Christina Hawn, James Plummer, and Ann Schmitz

Physical Therapists' Knowledge, Beliefs, and Practices Pertaining to Health Promotion and Fitness Testing , Megan Johnson, Allison Fisher, Megan Wiemann, Jenna Laska, and Andrea Eckstrom

Clinical Decision Making and Physical Therapy Management of Knee Pain Following Total Hip Arthoplasty: A Case Report , Lisa Marais

Physical Therapy Management Following Femoroacetabular Impingment Correction and Acetabular Labral Repair: A Case Report , Jessica Walker

Unraveling the Mystery of Knee Pain: A Case Report , Nicole L. Zehnder

Research Papers from 2011 2011

3D Knee Kinematics and Kinetics With Visual Disruption in Subjects With ACL Reconstruction , Brittni Baune, Jennifer Henderson, Jenna Merchant, and Kristian Olson

Lower Extremity Functional Screen for Biomechanical Faults in Female Athletes , Jacqueline Carpenter, Ann Donner, Kristine Hoff, and Naomi Johnson

The Effect of Training on Novice Raters When Performing Radiographic Measurement of Humeral Retroversion: a Follow-up Study , Ryan Christensen, Danielle Grambo, Erin Ingram, and Lyna Menezes

The Effect of Walking Poles on Gait Characteristics and Fear of Falling in Community Dwelling, Four-Wheel Walker Dependent and Non-Assistive Device Dependent Older Adults , Jennifer Gonnerman, Ellen Guerin, Karen Koza, and Courtney Tofte

Physical Therapy Intervention for a Patient with Bilateral Achilles Tendinopathy Following Periods of Immobilization: a Case Report , Alyssa Hageman

An Outpatient Physical Therapy Intervention Program , Rebecca K. Henderson

Functional Recovery in a 67-Year-Old Male with Staphylococcus Aureus Spinal Cord Abscess: a Case Report , Andrea Hokanson

Lower Extremity Activity of Infants with Spina Bifida: Does Context Still Matter , Sarah Meissner, Megan Ogaard, Jeanna Shirley, and Kristin Warfield

Clinical Use of the Nintendo WII for Balance Rehabilitation: a Case Report , Jasey Olsen

Safety of Physical Therapy Using Symptomatic Blood Value Guidelines in Children Being Treated for Cancer , Katie Peters and Jessica Tice

Research Papers from 2010 2010

Political Participation in Physical Therapy: Attitudes and Perceptions Across the Practice Spectrum , Cole Kampen, Nicholas Schneider, Miranda Swensen, and Amy Thompson

Advanced Search

  • Notify me via email or RSS
  • Collections
  • Disciplines

Author Corner

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

Banner

*Physical Therapy Research Guide: Home

  • Search for Information
  • Research Tips

Other Guides in [Subject]

  • *Physical Therapy Research Guide by Sarah Wade Last Updated Feb 20, 2024 0 views this year
  • CPHS Online Library Orientation by Meredith Beeman Last Updated Feb 9, 2024 43 views this year
  • DPT 702: Principles of Inquiry by Sarah Wade Last Updated Aug 30, 2023 2 views this year
  • DPT 768: Cardiopulmonary Practice by Sarah Wade Last Updated Feb 22, 2023 1 views this year
  • Evidence-Based Physical Therapy by Sarah Wade Last Updated Feb 1, 2024 44 views this year
  • SPAN 311, 312, 315, 316: Spanish for Medical Personnel by Elizabeth Dobbins Last Updated Feb 9, 2024 3 views this year

research paper related to physical therapy

Ask A Librarian

research paper related to physical therapy

Librarians are good resources for help with research, locating information, and citations . There are plenty of ways to get in touch!

Ask a librarian  for help via:

  • Consultation appointment
  • Online video room
  • email or phone

library.campbell.edu/ask

Subject Guide

Profile Photo

  • Next: Search for Information >>
  • Last Updated: Feb 20, 2024 3:32 PM
  • URL: https://guides.lib.campbell.edu/PhysicalTherapyResearch

Future physical therapist hopes to help meet the needs of underserved Oregon communities 

Meet Dean’s Health Hero Kylie Mannix

  • Post author By CPHHS Marcomm
  • Post date February 21, 2024

Portrait of Kylie Mannix and her dog

Undergraduate student Kylie Mannix chose OSU’s kinesiology program because of the many opportunities for hands-on, in-depth learning.

She says being surrounded by experienced, compassionate and professional staff and peers has played a crucial, beneficial role in her educational journey. 

What inspired or interested you about physical therapy? 

The field of physical therapy offers opportunities for influential and compassionate care working alongside people in need of rehabilitation and learning who they are to offer the best care possible. Having the ability to form connections with those being cared for and watching their journey progress is a great inspiration to me.

Have you had to overcome any challenges in your academic journey? 

One significant challenge I’ve had to overcome in my academic journey is the same challenge that affected all students, and still affects many to this day. During the COVID-19 pandemic, I experienced a significant reduction in accessibility to educational resources, as well as a significant decrease in education quality and availability in general.  

To overcome this challenge, my greatest outlet was those who were around me supporting my educational career. Friends, family, peers and educators, along with time and effort spent with them, allowed me to catch up and further my education.  

Do you participate in campus or community clubs or organizations? 

Currently, I am a part of the Dixon Recreation staff as a lead lifeguard. I also have some experience participating in and learning from Pre-Therapy and Allied Health Club opportunities and the Horticulture Club.  

Have you participated in research? If so, what did you learn from the experience? 

I have participated in reaction time research and motor learning experiments for motor behavior. These experiments offered valuable opportunities for learning kinesiology from the perspective of the patient rather than the care provider. This experience was very eye-opening and allowed me to develop a new frame of reference.  

Have you completed an internship? If so, where and what did you learn from the experience? 

I was very fortunate to have the experience of volunteering with Rock Steady Boxing in Albany and the Adaptive Exercise Clinic on campus. These volunteer opportunities allowed me to have a clearer understanding of not only multiple sclerosis and Parkinson’s disease, but also exercises suited to caring for individuals with these conditions.  

I am very thankful to have been able to spend my time and efforts with wonderful groups of people who offered strong connections and resources for me in the exercise medicine community.  

Have you received a scholarship? If so, how has it affected your life and your studies? 

I have received the Finley Scholarship. It has allowed me to focus on my education first and foremost and has opened doors to educational resources.  

What do you think of your experience at OSU/in the college so far? Any stand-out experiences? 

As of now, my experience with the College of Health has been a very personal and applicable one. Even as obstacles have presented themselves, the faculty and staff have always been there to offer support and resources that ultimately lead the way to success.  

I’ve been very fortunate to have wonderful professors and interactions with other students involved in the College of Health, and I am proud to belong to the community surrounding it. 

OSU has offered inclusive and available education to me regarding my education in kinesiology and science.  

What are your post-college plans?

After completion of my undergraduate degree this spring, I will be attending a doctor of physical therapy program in Oregon.

I aspire to provide high-quality physical therapy care to individuals in remote and underserved communities in Oregon and the Pacific Northwest region. 

  • Tags Kinesiology , Kylie Mannix , Pre-Therapy and Allied Health

This paper is in the following e-collection/theme issue:

Published on 21.2.2024 in Vol 26 (2024)

Effects of eHealth Interventions on 24-Hour Movement Behaviors Among Preschoolers: Systematic Review and Meta-Analysis

Authors of this article:

Author Orcid Image

  • Shan Jiang 1 , MSc   ; 
  • Johan Y Y Ng 1 , PhD   ; 
  • Kar Hau Chong 2 , PhD   ; 
  • Bo Peng 1 , MSc   ; 
  • Amy S Ha 1 , PhD  

1 Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China (Hong Kong)

2 School of Health and Society and Early Start, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, Australia

Corresponding Author:

Amy S Ha, PhD

Department of Sports Science and Physical Education

The Chinese University of Hong Kong

G05 Kwok Sports Building, Shatin, N.T.

China (Hong Kong)

Phone: 852 3943 6083

Email: [email protected]

Background: The high prevalence of unhealthy movement behaviors among young children remains a global public health issue. eHealth is considered a cost-effective approach that holds great promise for enhancing health and related behaviors. However, previous research on eHealth interventions aimed at promoting behavior change has primarily focused on adolescents and adults, leaving a limited body of evidence specifically pertaining to preschoolers.

Objective: This review aims to examine the effectiveness of eHealth interventions in promoting 24-hour movement behaviors, specifically focusing on improving physical activity (PA) and sleep duration and reducing sedentary behavior among preschoolers. In addition, we assessed the moderating effects of various study characteristics on intervention effectiveness.

Methods: We searched 6 electronic databases (PubMed, Ovid, SPORTDiscus, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials) for experimental studies with a randomization procedure that examined the effectiveness of eHealth interventions on 24-hour movement behaviors among preschoolers aged 2 to 6 years in February 2023. The study outcomes included PA, sleep duration, and sedentary time. A meta-analysis was conducted to assess the pooled effect using a random-effects model, and subgroup analyses were conducted to explore the potential effects of moderating factors such as intervention duration, intervention type, and risk of bias (ROB). The included studies underwent a rigorous ROB assessment using the Cochrane ROB tool. Moreover, the certainty of evidence was evaluated using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) assessment.

Results: Of the 7191 identified records, 19 (0.26%) were included in the systematic review. The meta-analysis comprised a sample of 2971 preschoolers, which was derived from 13 included studies. Compared with the control group, eHealth interventions significantly increased moderate to vigorous PA (Hedges g =0.16, 95% CI 0.03-0.30; P =.02) and total PA (Hedges g =0.37, 95% CI 0.02-0.72; P =.04). In addition, eHealth interventions significantly reduced sedentary time (Hedges g =−0.15, 95% CI −0.27 to −0.02; P =.02) and increased sleep duration (Hedges g =0.47, 95% CI 0.18-0.75; P =.002) immediately after the intervention. However, no significant moderating effects were observed for any of the variables assessed ( P >.05). The quality of evidence was rated as “moderate” for moderate to vigorous intensity PA and sedentary time outcomes and “low” for sleep outcomes.

Conclusions: eHealth interventions may be a promising strategy to increase PA, improve sleep, and reduce sedentary time among preschoolers. To effectively promote healthy behaviors in early childhood, it is imperative for future studies to prioritize the development of rigorous comparative trials with larger sample sizes. In addition, researchers should thoroughly examine the effects of potential moderators. There is also a pressing need to comprehensively explore the long-term effects resulting from these interventions.

Trial Registration: PROSPERO CRD42022365003; http://tinyurl.com/3nnfdwh3

Introduction

Physical activity (PA), sedentary behavior (SB), and sleep are integrated as “24-hour movement behaviors” owing to the collective effect on daily movement patterns. The 24-hour movement paradigm acknowledges the possibility of categorizing these behaviors according to their intensity levels across a full day. This encompasses a diverse range of activities, including sleep; SB (eg, screen time, reclining, or lying down); and light, moderate, or vigorous PA [ 1 ]. Globally, the “24-hour movement behaviors” paradigm has already been recognized and adopted into movement guidelines [ 2 ]. In 2020, the World Health Organization (WHO) released guidelines on PA and SB that incorporate all 3 movement behaviors [ 3 ]. The health benefits of engaging in PA, getting the recommended sleep, and reducing sedentary time are well documented. Recent reviews have shown a positive association between PA; sleep; and a wide range of child outcomes related to mental health, cognition, and cardiometabolism [ 4 - 6 ]. In addition, it is worth mentioning that different domains of SB can have varying health effects. For instance, non–screen-based sedentary activities such as reading or studying have been associated with favorable cognitive development in children [ 7 ]. Conversely, screen-based sedentary time, also referred to as “screen time,” has been found to have adverse effects on health-related outcomes [ 8 ]. Moreover, prior research has indicated that imbalances in 24-hour movement behaviors—specifically, elevated sedentary screen time coupled with diminished levels of PA and sleep—could potentially increase the risk of depression [ 9 ] and result in poor health-related quality of life [ 10 ]. Therefore, any change in one of the movement behaviors may lead to a compensatory increase or decrease in one or both behaviors.

However, insufficient healthy levels of 24-hour movement behaviors in early childhood have remained one of the most critical global public health challenges [ 11 , 12 ]. According to the WHO guidelines [ 3 ], preschool children are recommended to engage in adequate daily PA, consisting of 180 minutes, with 60 minutes dedicated to moderate to vigorous PA (MVPA). In addition, they should ensure sufficient sleep, ranging from 10 to 13 hours, while limiting sedentary recreational screen time to no more than 60 minutes per day. Unfortunately, a significant proportion of preschoolers do not meet the PA guidelines (<50% across studies) [ 13 ]. Furthermore, previous studies have consistently demonstrated that preschoolers exceed the screen time recommendations set by the WHO. A comprehensive meta-analysis of 44 studies revealed that only 35.6% of children aged between 2 and 5 years met the guideline of limiting daily screen time to 1 hour. Moreover, when examining the integration of 24-hour movement behaviors [ 8 ], another meta-analysis discovered that only 13% of children worldwide adhere to all 3 behavior guidelines [ 14 ].

Preschoolers play a crucial role in laying the foundation for long-term physical health and overall well-being [ 15 , 16 ]. Improving PA levels, minimizing SB, and prioritizing quality sleep in young children have multiple benefits, including positively influencing their physical fitness [ 17 , 18 ], promoting the development of motor and cognitive skills [ 19 , 20 ], and preventing childhood obesity [ 21 ] and associated health issues [ 14 , 22 , 23 ]. Several studies have shown that these healthy behavior patterns can shape lifelong habits that extend from childhood through adolescence and into adulthood [ 5 , 24 ].

Although these statistics are concerning, attempts to address the issue through various interventions have yielded inconsistent findings [ 25 - 28 ]. For instance, a meta-analysis of PA intervention studies involving preschoolers revealed only small to moderate effects in enhancing PA, suggesting room for improvement in achieving the desired outcomes [ 29 ]. In a meta-analysis conducted by Fangupo et al [ 30 ], no intervention effect was observed on daytime sleep duration for young children. Interestingly, earlier research has also elucidated overflow effects stemming from interventions focusing on a specific behavior, impacting other behaviors that were not the primary target. A systematic review highlighted that interventions aimed at enhancing PA in children aged <5 years led to a reduction in screen time by approximately 32 minutes [ 31 ]. It is crucial to understand that as time is finite, the durations dedicated to PA, sedentary time, and sleep are interconnected within 24 hours. Thus, we need effective interventions for preschool children that holistically address all components of 24-hour movement behaviors.

eHealth broadly refers to a diverse array of information and communication technologies used to facilitate the delivery of health care [ 32 , 33 ]. The rapid evolution of digitalization in recent decades has led to the widespread adoption of eHealth in interventions [ 28 , 34 ]. Recent reviews [ 35 - 38 ] suggest that with the global proliferation of eHealth interventions, health promotion via these platforms is evolving to become more accessible and user-friendly, garnering acceptance among adolescents and adults. Previous reviews have underscored the effectiveness of these digital platforms in enhancing various movement behavior outcomes across diverse age groups, including children aged 6 to 12 years [ 39 ], adolescents [ 40 ], adults [ 41 ], and older adults [ 42 ]. Specifically, a meta-analysis indicated that eHealth interventions have successfully promoted PA among individuals with noncommunicable diseases [ 43 ]. Another review showed that computer, mobile, and wearable technologies have the potential to mitigate sedentary time effectively [ 41 ]. Previous studies have targeted different participant groups to investigate the impact of eHealth on sleep outcomes. Deng et al [ 44 ] conducted a meta-analysis demonstrating that eHealth interventions for adults with insomnia are effective in improving sleep and can be considered a promising treatment. Nevertheless, a review focusing on healthy adolescents found that there has not been any school-based eHealth interventions focusing on sleep outcomes [ 45 ].

Indeed, child-centered strategies such as gamification are used in some digital apps and have been shown to encourage children’s PA [ 46 - 48 ]. A considerable body of work has addressed the pivotal role of parental influence and role modeling in cultivating healthy lifestyle habits in children [ 49 , 50 ]. Physical literacy, a multidimensional concept encompassing various aspects of PA such as the affective, physical, cognitive, and behavioral dimensions, plays a vital role in enhancing PA engagement [ 51 ]. Ha et al [ 52 ] conducted a web-based parent-focused intervention, revealing that enhancing parents’ physical literacy can effectively support children’s participation in PA. By understanding and promoting physical literacy, parents can provide valuable support to their children, fostering a lifelong commitment to healthy and active lifestyles. Although eHealth interventions offer promise, there are conflicting findings regarding their impact, especially when they are parent supported and targeted at young children. A previous meta-analysis examining eHealth interventions targeted at parents found no significant impact on children’s BMI. In addition, no studies have included children aged <5 years [ 50 ]. Similarly, a recent systematic review observed that eHealth interventions aimed at parents showed no significant effectiveness in enhancing PA levels in young children [ 53 ]. However, the prevalence of digital device use in young children has become widespread. For instance, studies conducted in England (the United Kingdom), Estonia, and the United States have reported that, on average, 83% of children aged 5 years use a digital device at least once a week [ 54 ]. Research also revealed that in the United States, approximately three-fourths of children had their own mobile device by the age of 4 years, and nearly all children (96.6%) used mobile devices [ 55 ]. Consequently, there is an urgent need to harness the potential of digital platforms and explore whether they can effectively deliver interventions to preschoolers [ 56 ].

In previous research, there has been a lack of studies examining the effectiveness of eHealth behavior change interventions among preschoolers. Although a systematic review found a significant effect of digital health interventions on the PA of preschoolers [ 53 ], this review did not include sedentary time and sleep in its inclusion criteria, and there is a lack of conclusive statements owing to the insufficient number of studies, and no quantitative methods were available for synthesizing the evidence on the effectiveness of eHealth interventions. To our knowledge, no systematic review or meta-analysis has distinctly investigated the effects of eHealth interventions on 24-hour movement behaviors in preschoolers or the factors that may influence their implementation. Therefore, the aims of this study were (1) to assess the effectiveness of eHealth interventions on 24-hour movement behaviors (improving PA and sleep duration and decreasing sedentary time) and (2) to examine the moderating effects of study characteristics (eg, intervention duration, intervention type, and outcome measurement tools) on intervention effectiveness.

This review was registered with PROSPERO (CRD42022365003) and conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines [ 57 ].

Eligibility Criteria

This review included trials with a randomization procedure that examined the outcomes of interventions using information and communication technology. These interventions targeted at least 1 movement behavior in preschool children aged 2 to 6 years. Studies were excluded if (1) the control groups received intervention using eHealth technology and (2) published in a non-English language. Full details are provided in Multimedia Appendix 1 [ 58 ].

Search and Selection

The following databases were systematically searched from inception to February 08, 2023: PubMed, Ovid, SPORTDiscus, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials. We used the search terms “eHealth,” “Physical activity,” “Sedentary behavior,” “Sleep,” “preschooler,” and their Medical Subject Headings terms. The complete search strategy is described in Multimedia Appendix 2 [ 59 - 61 ]. A manual search of the reference lists of the included publications was performed to identify additional eligible studies for potential inclusion. Two independent reviewers (SJ and BP) screened the titles and abstracts and subsequent full-text articles for eligibility. Discrepancies that emerged during the selection process were effectively resolved through a discussion involving 3 authors (SJ, BP, and JYYN).

Data Extraction

A comprehensive data extraction form was developed (SJ) and refined (SJ and BP) based on the Cochrane Handbook for Systematic Reviews of Interventions [ 62 ]. Extracted information included bibliographic details (authors, title, journal, and year); study details (country, design, retention rate); participants’ characteristics (number of children and demographics); intervention type (parent supported, teacher led, or child centered), intervention’s theoretical basis, duration, delivery tool, and intensity; comparison (sample size, activity type); outcomes (behavioral variables with baseline and postintervention means with SDs), and measurement tools. Regarding the categorization of intervention types, we have established a clear classification. Specifically, in child-centered interventions, children are the direct beneficiaries, participating autonomously with less guidance from guardians. This can be accomplished using an exergaming system or designed mobile health games. In parent-supported interventions, parents are involved in educational programs and instructions that improve parents’ knowledge of preschoolers’ healthy movement behaviors. A teacher-led intervention involves supervising preschoolers’ PA during school time or participating in structured PA sessions aimed at improving healthy indicators. For data that were either incomplete or absent within the main text, we sought to reach out to the respective authors through email correspondence.

Risk of Bias

The included studies were assessed for risk of bias (ROB) using the revised Cochrane ROB2 tool [ 63 ]. The following domains of bias were assessed for each study: selection (random sequence generation and allocation concealment), performance and detection (masking of participants, personnel, and assessors), deviations from intended interventions, missing outcome data, measurement of the outcome, appropriateness of analysis (selection of the reported outcome), and bias arising from period and carryover effects (for crossover studies) [ 63 ]. The studies were ranked as low risk, some concerns, or high risk for each domain. The ROB was evaluated independently by 2 authors (SJ and BP). Any discrepancies were resolved through discussions with the author (JYYN).

Outcomes and Data Synthesis

Our outcome targeted any of the following movement behaviors: PA (MVPA and total PA), sedentary time (screen time and sitting time), or sleep duration. Meta-analysis was conducted in R (version 4.2.1; R Group for Statistical Computing) using the meta , metafor , and metareg packages [ 64 ]. A random-effects model (Hartung-Knapp method) was used to calculate pooled estimates (Hedges g , a type of standardized mean difference) to account for variations in participants and measurement methods of movement behavior outcomes [ 65 ]. Multimedia Appendix 3 [ 63 - 65 ] describes the processing of missing data. Hedges g and their corresponding variances were calculated using the pre- and postintervention mean scores and SDs. However, if some studies had changes in baseline and postintervention data or if there were significant differences in their baseline data [ 59 - 61 ], we used the within-group difference in means and their SDs for intervention and control groups to calculate the effect size. Values of 0.2, 0.5, and 0.8 represent small, moderate, and large effect sizes, respectively. A positive effect size indicated a beneficial effect on the intervention group compared with the control group. The between-group heterogeneity of the synthesized effect sizes was examined using the Cochran Q test and I 2 statistics. I 2 values of 25%, 50%, and 75% indicated low, moderate, and high levels of heterogeneity, respectively. Subgroup analyses were conducted based on the following factors: (1) intervention duration (0-3 months vs >3 months) and (2) type of intervention (child centered, parent focused, or teacher led). (3) Types of outcome measurement tools (objective vs self-reported) and (4) ROB (low risk, some concerns, or high risks).

Furthermore, we performed meta-regression analyses to examine the impact of potential moderators on the overall effect size. Potential moderators included 5 variables, as specified in the subgroup analyses, and 2 continuous variables (sample size and intervention length). These variables were selected based on existing evidence that highlights their significant moderating effects on eHealth interventions targeting movement behaviors [ 53 , 66 , 67 ]. Sensitivity analyses were performed using the leave-one-out method. Publication bias was visualized using funnel plot symmetry and quantified using the Eggertest score, for which P <.05 indicates a significant publication bias [ 68 ].

Quality Assessment of the Overall Evidence

GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) 2 criteria were used to assess the certainty of evidence for the effect of eHealth interventions on the targeted outcomes [ 69 , 70 ]. The GRADE assessment was completed using GRADEpro, and the quality of evidence was classified as high (≥4 points overall), moderate (3 points), low (2 points), or very low (≤1 point) [ 70 ].

Study Selection

The database search yielded 7140 records, with an additional 51 records identified from the reference lists of relevant systematic reviews. There were 64 articles screened for full text, and 45 articles were excluded. The reasons for exclusion are listed in Multimedia Appendix 4 . A total of 19 studies reporting the effectiveness of interventions on movement behaviors were included in the systematic review [ 17 , 59 - 61 , 71 - 85 ], and 13 studies were included in the meta-analysis [ 59 - 61 , 76 - 85 ]. The PRISMA flowchart of the study selection process is shown in Figure 1 and PRISMA checklists are in Multimedia Appendices 5 and 6 .

research paper related to physical therapy

Study Characteristics

The study characteristics are described in Table 1 . In the 19 studies, 2971 preschoolers from 6 regions were included. A total of 18 studies were conducted in high-income countries, and only 1 study was conducted in an upper middle–income country, according to the World Bank classification ( Multimedia Appendix 7 ) [ 86 ]. Most included studies were conducted during and after 2017. For the study design, 16 studies were 2-arm randomized controlled trials (RCTs), with 11 using a parallel group design [ 17 , 59 - 61 , 71 - 74 , 76 , 77 , 84 ], 2 being cluster RCTs [ 82 , 83 ], 2 pilot RCTs [ 79 , 81 ], and 1 crossover study [ 85 ]. The remaining 3 studies consisted of 2-arm experimental studies with a randomization procedure [ 75 , 78 , 80 ]. The sample size ranged from 34 preschoolers to 617 preschoolers. The study details are presented in Multimedia Appendices 8 and 9 [ 59 - 61 , 76 - 85 ].

a I: intervention.

b C: control.

c ECEC: early childhood education and care.

d PA: physical activity.

e SB: sedentary behavior.

f mHealth: mobile health.

g MINISTOP: mobile-based intervention intended to stop obesity in preschoolers.

h FMS: fundamental movement skills.

Intervention Details

The included studies used various delivery channels of eHealth technologies for the intervention. Seven studies used smartphone apps [ 59 - 61 , 74 ] and social media (Facebook and WhatsApp) [ 75 , 80 , 82 ]; 3 studies used an exergaming program [ 17 , 73 , 85 ]; 3 studies used the internet, with interventions including informational websites [ 83 , 84 ] and tablet computers [ 72 ]; and several studies used technology to dispatch reminders to exercise and send motivational messages encouraging persistence. Specifically, studies sent text messages and made telephone calls [ 71 , 76 - 79 , 81 ].

The intervention duration ranged from 1 week [ 78 ] to 36 months [ 77 ]. Seven studies had interventions that lasted >3 months [ 59 , 61 , 71 , 76 , 77 , 80 , 82 ]. Only 3 studies included follow-up assessment after intervention, with durations of 6 weeks [ 84 ], 3 months [ 72 ], and 6 months [ 60 ]. Regarding intervention types, this study consisted of 12 studies supported by parents [ 59 - 61 , 71 , 72 , 75 - 77 , 79 - 81 , 84 ], 3 studies led by teachers [ 78 , 82 , 83 ], and 4 studies involving eHealth interventions directed at children [ 17 , 73 , 74 , 85 ].

The comparison groups included a waitlist control group (n=4) [ 74 , 79 , 81 , 84 ], education as usual (n=7) [ 17 , 59 , 75 , 78 , 80 , 82 , 85 ], and an additional non-eHealth intervention (n=8) [ 59 - 61 , 71 - 73 , 76 , 77 ]. A total of 14 studies targeted PA [ 17 , 59 - 61 , 72 - 75 , 77 , 78 , 80 , 81 , 83 , 85 ], 12 studies targeted SB [ 59 - 61 , 71 , 76 - 80 , 82 , 84 , 85 ], and 4 studies targeted sleep duration [ 71 , 76 , 81 , 84 ]. Notably, no studies examined all 3 movement behaviors.

Meta-Analyses

Meta-analyses demonstrated that eHealth interventions produced significant improvements in MVPA (Hedges g =0.16, 95% CI 0.03-0.30; P =.02; 7/13, 54%) and total PA (Hedges g =0.37, 95% CI 0.02-0.72; P =.04; 2/13, 15%), as shown in Figure 2 A [ 77 , 78 , 80 - 83 , 85 ]. For SB outcomes, another meta-analysis showed a significant decrease (Hedges g =−0.15, 95% CI −0.27 to −0.02; P =.02; 8/13, 62%), as shown in Figure 2 B [ 76 - 80 , 82 , 84 , 85 ]. Finally, meta-analysis also showed that there were significant improvements in sleep duration (Hedges g =0.47, 95% CI 0.18-0.75; P <.01; 3/13, 23%), as shown in Figure 2 C [ 76 , 81 , 84 ].

Owing to the heterogeneity among the included studies, the mobile-based intervention intended to stop obesity in preschoolers (MINISTOP) project’s 3 studies solely reported the difference in pre-to-post comparison [ 60 , 61 , 76 ]. Consequently, their inclusion in the pooled analysis with other studies was deemed inappropriate. We analyzed a series of MINISTOP studies separately and presented the findings using a forest plot. The pooled analysis indicated that no significant change in MVPA (Hedges g =−0.03, 95% CI −0.15 to 0.09; P =.66; 3/6, 50%; Multimedia Appendix 10 [ 59 - 61 , 76 - 85 ]) was observed between the intervention and control groups. An intervention effect was found in reducing SB (Hedges g =0.02, 95% CI −0.13 to 0.16; P =.83; 3/6, 50%; Multimedia Appendix 10 ) immediately after the intervention, as indicated in Multimedia Appendix 10 . Nonetheless, this effect was not statistically significant. All the results showed negligible heterogeneity ( I 2 =0).

research paper related to physical therapy

Subgroup Analyses and Meta-Regression

Table 2 shows the subgroup analysis and meta-regression results of MVPA and sedentary time according to study characteristics. No significant moderating effects were observed for any of the variables assessed ( P >.05). The complete results of the subgroup analyses are presented in Multimedia Appendix 11 [ 59 - 61 , 76 - 85 ].

a MVPA: moderate to vigorous physical activity.

b N/A: not applicable.

c Teacher focused studies as a reference group.

Sensitivity Analyses and Publication Bias

Sensitivity analysis indicated that no individual study had an excessive influence on the results. The omitted meta-analytic estimates were not significantly different from those associated with the combined analysis, and all estimates were within the 95% CI. Forest plots of the sensitivity analysis for MVPA, sedentary time, and sleep are summarized in Multimedia Appendix 12 [ 59 - 61 , 76 - 85 ]. The significance of Egger’s test results provided evidence for asymmetry of the funnel plots (MVPA: t 5 =3.27; P =.02; Multimedia Appendix 13 ; sedentary time: t 6 =−3.37; P =.02; Multimedia Appendix 14 ). However, we could not distinguish chance from true asymmetry using the funnel plot asymmetry test because <10 studies were included in our meta-analysis [ 86 ].

ROB of Studies

Multimedia Appendix 15 [ 59 - 61 , 76 - 85 ] summarizes the overall ROB assessment for all the included papers. Six studies were considered to have a low ROB [ 59 , 74 , 76 , 77 , 79 , 85 ], and the remaining 13 were considered to have some concerns regarding the ROB [ 17 , 60 , 61 , 71 - 73 , 75 , 78 , 80 - 84 ]. Furthermore, 7 studies did not disclose randomization methods clearly [ 17 , 72 , 75 , 78 , 80 , 82 , 83 ], so they were rated as having some concerns about random sequence generation. All studies were rated as having a low risk for the measurement of outcomes based on the use of objective measurement tools or reliable questionnaires in each study. Four studies were rated as ‘some concerns’ of reporting bias because neither published study protocols nor registered trial records were presented [ 72 , 75 , 78 , 80 ].

Quality of the Evidence

The GRADE scores are shown in Multimedia Appendix 16 , and we deemed the overall quality of evidence to be moderate to low. The quality of evidence for MVPA and sedentary time outcomes was rated as “moderate,” considering the low ROB, absence of heterogeneity in participants’ outcomes, and high precision in results. As eHealth interventions are often combined with other intervention approaches, all evaluations of directness were assessed as “Indirectness.” There were high imprecisions with the sample size included in the study for total PA and sleep, which were graded as “Low.”

Principal Findings

This study systematically reviewed the effectiveness of eHealth interventions targeting 24-hour movement behaviors among preschool-aged children. Most studies assessed interventions aimed at increasing PA and decreasing SB. Few studies targeted sleep, and no studies have addressed a combination of all 24-hour movement behaviors. Overall, these studies showed trends supporting the effectiveness of eHealth interventions in increasing PA and sleep duration and reducing sedentary time immediately after the intervention; however, only short-term effects were found, and all trials were judged to be of low to moderate quality.

This review demonstrates a small positive effect of eHealth interventions targeting increases in preschooler’s MVPA (Hedges g =0.16) and total PA (Hedges g =0.37) immediately after the intervention. One possible explanation could be that eHealth interventions, while providing new opportunities for PA, might not be sufficient to result in significant overall activity increases. This might require expanding activity opportunities, extending new activity options, and enhancing broader activity strategies to achieve substantial benefits. Our findings echo the argument made in a previous study of young children that PA interventions had a small effect on MVPA [ 87 ]. Another meta-analysis found a positive impact of PA interventions with small to moderate effects on total PA (Hedges g =0.44) and moderate effects on MVPA (Hedges g =0.51) [ 29 ]. There is no conclusive explanation as to why MVPA and total PA were seen to have a smaller effect in our study, but this could be attributed to most interventions thus far concentrating on devising PA programs of diverse intensities without distinct objectives, including low-intensity PA, MVPA, and total PA (eg, activities such as outdoor active play and structured gross motor activity sessions in childcare environments). Moreover, our results are consistent with previous review findings that digital platforms can potentially increase PA among preschoolers [ 53 ]. Hence, future interventions should aim to optimize their effectiveness in increasing PA among young children. In addition, further research is warranted to investigate the mechanisms of the changes associated with these PA outcomes. This will help enhance the size and sustainability of the effects observed in eHealth interventions.

We found no significant improvement in MVPA for mobile app interventions (MINISTOP project). This is in contrast to a review of studies focusing on mobile apps and technologies, which highlighted the significant potential to enhance PA [ 88 ]. It is worth noting that the MINISTOP project aimed to reduce obesity as its primary outcome rather than targeting MVPA. In addition, studies concentrating solely on educating parents without implementing direct interventions for children have not achieved the desired enhancements in MVPA. Thus, we cannot draw conclusions about mobile apps because few intervention studies have used these means of communication for young children and their guardians. Given the small number of studies included in our meta-analysis, the positive, negative, and null findings of the individual studies may have attenuated the results. Thus, considering the popularity and cost-effectiveness of mobile apps in the new generation, future research should investigate the potential of using emerging and novel technologies, such as mobile health, for preschoolers.

Our meta-analysis suggests that eHealth interventions may be an effective strategy for decreasing sedentary time in preschoolers, although the magnitude of the effect was small (Hedges g =−0.15) and short term. Nonetheless, the significance should not be understated, given that many studies indicate that reduced sedentary time during childhood correlates with improved physical and mental health outcomes in subsequent years [ 16 , 21 , 89 ]. In the subgroup analysis, the effect of eHealth interventions on sedentary time varied depending on whether accelerometer or questionnaire measures were used. The questionnaire measures yielded higher levels of sedentary time, although this difference was not statistically significant. This observation aligns with findings from the existing literature, suggesting that questionnaire-based assessments tend to overestimate the actual sedentary time. For a more accurate evaluation of the impact of eHealth interventions, future research should consider using device-based measurement methods [ 90 ].

Interestingly, most eHealth interventions aimed to increase children’s PA and reduce sedentary time with parental support. Previous research has shown that parental and family involvement were among the key intervention components that encouraged significant improvement in children’s health behaviors and a decrease in sedentary time [ 91 , 92 ]. Likewise, Ha et al [ 49 ] found that parents’ physical literacy predicts children’s values toward PA, and concurrent interventions that target enhancing parents’ physical literacy for PA in the family context may be more effective in raising children’s PA values. However, our subgroup analysis showed no significant improvements in MVPA or reductions in sedentary time with the parent-supported interventions. This result also aligns with a prior review indicating that parent-directed digital interventions were ineffective in improving PA [ 53 ]. In that review, 8 studies, all published before 2020, primarily used digital platforms to convey health information and education to parents. Notably, in the wake of the COVID-19 pandemic, there has been a marked increase in research centered on leveraging technology to improve children’s PA, leading to more recent studies in 3 years [ 93 ]. Furthermore, the discourse regarding the comparative value of targeting either parents or children exclusively is not a novel debate within intervention research. In contrast to the review, our study featured a larger sample size and included a quantitative analysis of effect sizes in the interventions. These insights indicate that prevailing eHealth interventions, even with parental support, may fail to effectively engage preschoolers. Recognizing the reciprocal dynamics between parents and young children can offer insights for refining digital interventions. Therefore, preliminary research is imperative to comprehensively understand the perceptions, attitudes, and driving factors of parents. Recognizing the reciprocal dynamics between parents and young children is crucial in understanding how they influence their children’s PA and SB.

Intervention duration is also an essential component for conducting acceptable and highly effective interventions. Another subgroup analysis found that interventions with a duration of <3 months had a significantly greater effect on PA and sedentary time than those with a duration of >3 months, although the results were not significant. This notion is corroborated by another systematic review, which demonstrated the difficulty in sustaining long-term behavior change, potentially attributed to the diminishing effects of behavior change interventions mediated by digital technology [ 41 ].

The meta-analysis, involving 3 studies, revealed an immediate improvement in sleep duration following the intervention. Previous research has extensively examined the influence of sleep duration during the preschool years on physical, cognitive, and psychosocial development. For instance, the systematic review by Chaput et al [ 6 ] involving 25 studies revealed a correlation between shorter sleep duration and diminished emotion regulation in children aged 0 to 4 years. Recent findings also suggest that maintaining an extended sleep duration during the early preschool stages is significant for subsequent behavioral outcomes [ 24 ]. However, few studies have focused on effective interventions to improve sleep outcomes [ 45 , 94 ]. Consequently, further research is warranted to explore the impact of eHealth interventions on sleep outcomes among preschoolers.

Increasing awareness of the interconnected nature of 24-hour movement behaviors highlights their intrinsic interdependence [ 14 ]. However, none of the studies in our review specifically investigated the intervention effects on all 3 movement behaviors. Generally, conventional analytical methods do not adequately consider these indicators during analysis. Therefore, future research should explore alternative approaches, such as compositional analyses, to attain a more profound comprehension of whether an optimal equilibrium is present among SB, light PA, MVPA, and sleep [ 90 , 95 , 96 ]. Furthermore, most studies in our review examined the immediate postintervention effect. Consequently, insights into the enduring nature of alterations in 24-hour movement behaviors remain elusive. Further studies should include long-term follow-up assessments. In addition, it would be interesting to obtain more insights into the feasibility of incorporating wearable devices and apps into the design of eHealth interventions. This information could inform the design of wearables and apps that effectively enhance PA, diminish sedentary time, and enhance sleep, thereby maximizing their impact on public health. Moreover, the overall quality of the interventions was suboptimal, lacking thorough descriptions or proper execution in areas such as randomization, blinded outcome assessment, valid measurement of 24-hour movement behaviors, and adjusted differences between groups. In our meta-analysis, we observed that lower-quality studies exhibited a more pronounced positive impact on the targeted outcomes. Thus, it is essential to interpret the results cautiously, recognizing that there could be an overestimation of the effect of eHealth interventions in studies of lower quality owing to potential bias. This mirrors the findings from previous reviews on eHealth childhood PA [ 53 ] and behavior change interventions among adolescents [ 45 ].

Strengths and Limitations

This systematic review has some strengths. First, this study is the first meta-analysis to quantitatively assess the effects of previously conducted RCTs using eHealth interventions on 24-hour movement behaviors in preschoolers. Second, the review was conducted rigorously, encompassing comprehensive terms and using an extensive systematic search strategy. We focused on robust evidence from RCT studies, assessed the quality using the GRADE approach, and adhered to a preregistered protocol. This meticulous approach reduces the heterogeneity and provides a more precise estimation of the effects.

Nonetheless, several limitations of our study should be noted. First, the quality of the studies included in this review was generally low and lacked rigorous study designs. Second, the small number of studies discerned over the decade spanned by this meta-analysis underscores the nascent state of this research domain, even considering significant technological advancements and their widespread acceptance. Third, although we systematically screened relevant electronic databases to identify studies, the search was restricted to studies published in English. Finally, the lack of evidence regarding sustained effects beyond the immediate postintervention period underscores the need for extended follow-up. Future studies should strive to elucidate strategies for maintaining the intervention effects over the preschooler’s trajectory.

Future Research and Implications

This study highlights the significant avenues for future research. First, further research is warranted to develop eHealth interventions that yield larger effect sizes and higher quality, specifically in identifying effective 24-hour movement behaviors. It is worth noting that none of the eligible eHealth interventions addressed the comprehensive integration of 24-hour movement behaviors in preschoolers, despite the increasing recognition of the interdependence between PA, SB), and sleep. Second, many studies were conducted in Western and high-income countries, prompting the need for further exploration of the effectiveness of eHealth behavior change interventions in other country settings. Third, our study’s focus was primarily on the quantitative aspects of 24-hour movement behaviors, warranting future studies to also delve into the qualitative facets, such as motor skills and sleep quality. In addition, it is crucial to recognize the pivotal role of objective measurement tools in comprehending movement behaviors among young children. Given the sporadic and unstructured nature of preschoolers’ activities, it becomes challenging for parents and teachers to accurately discern shifts in MVPA and SB, even if they have occurred. This highlights the importance of using objective measurement tools for precise insights into these behaviors. Finally, future research in this field should prioritize broadening the focus and incorporate additional dimensions, such as physical, affective, and cognitive indicators. This approach may promote the holistic development of young children and contribute to advancements in the field of health outcomes. By considering these dimensions, researchers can also gain a comprehensive understanding of the various factors that influence children’s overall well-being and physical literacy development.

Given the multifaceted nature of intervention moderators, further research is warranted to establish optimal patterns of daily movement behaviors and to gain deeper insights into the mechanisms underlying change when addressing the amalgamation of 24-hour movement behaviors in preschoolers. Indeed, future interventions should also draw from the effective behavior change techniques used in single-behavior eHealth interventions and apply them to interventions targeting multiple healthy movement behaviors. Moreover, collaborative engagement with parents and teachers throughout both the developmental and implementation phases of these interventions will play a pivotal role in their success. In addition, capitalizing on emerging and novel technologies may offer a valuable avenue to enhance the effectiveness and feasibility of these interventions.

Conclusions

The findings suggest that eHealth interventions may hold promise in improving 24-hour movement behaviors, particularly by increasing PA, improving sleep duration, and reducing sedentary time among preschoolers. However, these effects were relatively modest and transient and were observed primarily immediately after the intervention. Furthermore, the overall quality of the evidence was rated as moderate to low. As a result, there is a pressing need for rigorous and high-quality research endeavors to develop eHealth interventions capable of effectively enhancing both the quantity and quality of 24-hour movement behaviors simultaneously. These interventions should strive to maintain their effects over extended periods.

Acknowledgments

The authors of this study would like to express their sincere gratitude to the authors who responded to their emails and generously provided detailed information and data regarding their studies. Their cooperation has been instrumental in advancing this study.

Data Availability

The data sets generated during and analyzed during this study are available from the corresponding author on reasonable request.

Authors' Contributions

SJ drafted the manuscript. SJ, ASH, and JYYN were responsible for the concept and design of the study. SJ and BP screened all abstracts full texts, extracted all data, performed the risk of bias, and conducted the quality assessment. SJ performed the statistical analyses. SJ, JYYN, KHC, and ASH critically revised the manuscript for important intellectual content. All authors participated in developing the review’s methodology, contributed to multiple manuscript drafts, and gave their approval for the final version.

Conflicts of Interest

None declared.

Eligibility criteria for study inclusion.

Search strategy.

Missing data processing.

Exclusion studies.

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist.

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) abstract checklist.

Number of studies included per country and income economy.

Summary of intervention details in the included studies.

Characteristics of the included studies including physical activity, sedentary behavior, and sleep outcomes.

Forest plot of the mobile-based intervention intended to stop obesity in preschoolers (MINISTOP) results.

Forest plots of the subgroup analyses of moderate to vigorous physical activity and sedentary behavior.

Sensitive analysis.

Moderate to vigorous physical activity bias funnel.

Sedentary behavior bias funnel.

Risk of bias.

GRADE (Grading of Recommendations Assessment, Development, and Evaluation) assessment results.

  • Shirazipour CH, Raines C, Diniz MA, Salvy SJ, Haile RW, Freedland SJ, et al. The 24-hour movement paradigm: an integrated approach to the measurement and promotion of daily activity in cancer clinical trials. Contemp Clin Trials Commun. Apr 2023;32:101081. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • WHO guidelines on physical activity and sedentary behaviour. World Health Organization. 2020. URL: https://www.who.int/publications/i/item/9789240015128 [accessed 2024-01-18]
  • Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age. World Health Organization. 2019. URL: https://iris.who.int/bitstream/handle/10665/311664/9789241550536-eng.pdf?sequence=1 [accessed 2024-01-18]
  • Kuzik N, Poitras VJ, Tremblay MS, Lee EY, Hunter S, Carson V. Systematic review of the relationships between combinations of movement behaviours and health indicators in the early years (0-4 years). BMC Public Health. Nov 20, 2017;17(Suppl 5):849. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Rollo S, Antsygina O, Tremblay MS. The whole day matters: understanding 24-hour movement guideline adherence and relationships with health indicators across the lifespan. J Sport Health Sci. Dec 2020;9(6):493-510. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chaput JP, Gray CE, Poitras VJ, Carson V, Gruber R, Birken CS, et al. Systematic review of the relationships between sleep duration and health indicators in the early years (0-4 years). BMC Public Health. Nov 20, 2017;17(Suppl 5):855. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Hu R, Zheng H, Lu C. The association between sedentary screen time, non-screen-based sedentary time, and overweight in Chinese preschool children: a cross-sectional study. Front Pediatr. Dec 2021;9:767608. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • McArthur BA, Volkova V, Tomopoulos S, Madigan S. Global prevalence of meeting screen time guidelines among children 5 years and younger: a systematic review and meta-analysis. JAMA Pediatr. Apr 01, 2022;176(4):373-383. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • da Costa BG, Chaput JP, Lopes MV, Malheiros LE, Silva KS. Movement behaviors and their association with depressive symptoms in Brazilian adolescents: a cross-sectional study. J Sport Health Sci. Mar 2022;11(2):252-259. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Del Pozo-Cruz B, Perales F, Parker P, Lonsdale C, Noetel M, Hesketh KD, et al. Joint physical-activity/screen-time trajectories during early childhood: socio-demographic predictors and consequences on health-related quality-of-life and socio-emotional outcomes. Int J Behav Nutr Phys Act. Jul 08, 2019;16(1):55. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Okely AD, Kariippanon KE, Guan H, Taylor EK, Suesse T, Cross PL, et al. Global effect of COVID-19 pandemic on physical activity, sedentary behaviour and sleep among 3- to 5-year-old children: a longitudinal study of 14 countries. BMC Public Health. May 17, 2021;21(1):940. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Okely AD, Reilly JJ, Tremblay MS, Kariippanon KE, Draper CE, El Hamdouchi A, et al. Cross-sectional examination of 24-hour movement behaviours among 3- and 4-year-old children in urban and rural settings in low-income, middle-income and high-income countries: the SUNRISE study protocol. BMJ Open. Oct 25, 2021;11(10):e049267. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Tucker P. The physical activity levels of preschool-aged children: a systematic review. Early Child Res Q. Oct 2008;23(4):547-558. [ FREE Full text ] [ CrossRef ]
  • Feng J, Zheng C, Sit CH, Reilly JJ, Huang WY. Associations between meeting 24-hour movement guidelines and health in the early years: a systematic review and meta-analysis. J Sports Sci. Nov 28, 2021;39(22):2545-2557. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Feng J, Huang WY, Reilly JJ, Wong SH. Compliance with the WHO 24-h movement guidelines and associations with body weight status among preschool children in Hong Kong. Appl Physiol Nutr Metab. Oct 2021;46(10):1273-1278. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Rodriguez-Ayllon M, Cadenas-Sánchez C, Estévez-López F, Muñoz NE, Mora-Gonzalez J, Migueles JH, et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: a systematic review and meta-analysis. Sports Med. Sep 16, 2019;49(9):1383-1410. [ CrossRef ] [ Medline ]
  • Gao Z, Lee JE, Zeng N, Pope ZC, Zhang Y, Li X. Home-based exergaming on preschoolers' energy expenditure, cardiovascular fitness, body mass index and cognitive flexibility: a randomized controlled trial. J Clin Med. Oct 21, 2019;8(10):1745. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wong RS, Tung KT, Chan BN, Ho FK, Rao N, Chan KL, et al. Early-life activities mediate the association between family socioeconomic status in early childhood and physical fitness in early adolescence. Sci Rep. Jan 07, 2022;12(1):81. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Zeng N, Ayyub M, Sun H, Wen X, Xiang P, Gao Z. Effects of physical activity on motor skills and cognitive development in early childhood: a systematic review. Biomed Res Int. 2017;2017:2760716. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Carson V, Hunter S, Kuzik N, Wiebe SA, Spence JC, Friedman A, et al. Systematic review of physical activity and cognitive development in early childhood. J Sci Med Sport. Jul 2016;19(7):573-578. [ CrossRef ] [ Medline ]
  • Talarico R, Janssen I. Compositional associations of time spent in sleep, sedentary behavior and physical activity with obesity measures in children. Int J Obes (Lond). Aug 2018;42(8):1508-1514. [ CrossRef ] [ Medline ]
  • Cliff DP, McNeill J, Vella SA, Howard SJ, Santos R, Batterham M, et al. Adherence to 24-hour movement guidelines for the early years and associations with social-cognitive development among Australian preschool children. BMC Public Health. Nov 20, 2017;17(Suppl 5):857. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Christian H, Murray K, Trost SG, Schipperijn J, Trapp G, Maitland C, et al. Meeting the Australian 24-hour movement guidelines for the early years is associated with better social-emotional development in preschool boys. Prev Med Rep. Jun 2022;27:101770. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Guerlich K, Avraam D, Cadman T, Calas L, Charles MA, Elhakeem A, et al. Sleep duration in preschool age and later behavioral and cognitive outcomes: an individual participant data meta-analysis in five European cohorts. Eur Child Adolesc Psychiatry. Jan 2024;33(1):167-177. [ CrossRef ] [ Medline ]
  • Johnstone A, Hughes AR, Martin A, Reilly JJ. Utilising active play interventions to promote physical activity and improve fundamental movement skills in children: a systematic review and meta-analysis. BMC Public Health. Jun 26, 2018;18(1):789. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lee AM, Chavez S, Bian J, Thompson LA, Gurka MJ, Williamson VG, et al. Efficacy and effectiveness of mobile health technologies for facilitating physical activity in adolescents: scoping review. JMIR Mhealth Uhealth. Feb 12, 2019;7(2):e11847. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Morgan EH, Schoonees A, Sriram U, Faure M, Seguin-Fowler RA. Caregiver involvement in interventions for improving children's dietary intake and physical activity behaviors. Cochrane Database Syst Rev. Jan 05, 2020;1(1):CD012547. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Hammersley ML, Wyse RJ, Jones RA, Okely AD, Wolfenden L, Eckermann S, et al. Telephone and web-based delivery of healthy eating and active living interventions for parents of children aged 2 to 6 years: mixed methods process evaluation of the time for healthy habits translation trial. J Med Internet Res. May 26, 2022;24(5):e35771. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Gordon ES, Tucker P, Burke SM, Carron AV. Effectiveness of physical activity interventions for preschoolers: a meta-analysis. Res Q Exerc Sport. Sep 2013;84(3):287-294. [ CrossRef ] [ Medline ]
  • Fangupo LJ, Haszard JJ, Reynolds AN, Lucas AW, McIntosh DR, Richards R, et al. Do sleep interventions change sleep duration in children aged 0-5 years? A systematic review and meta-analysis of randomised controlled trials. Sleep Med Rev. Oct 2021;59:101498. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Downing KL, Hnatiuk JA, Hinkley T, Salmon J, Hesketh KD. Interventions to reduce sedentary behaviour in 0-5-year-olds: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. Mar 06, 2018;52(5):314-321. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Oh H, Rizo C, Enkin M, Jadad A. What is eHealth (3): a systematic review of published definitions. J Med Internet Res. Feb 24, 2005;7(1):e1. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Boogerd EA, Arts T, Engelen LJ, van de Belt TH. "What is eHealth": time for an update? JMIR Res Protoc. Mar 12, 2015;4(1):e29. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Liu S, Li J, Wan DY, Li R, Qu Z, Hu Y, et al. Effectiveness of eHealth self-management interventions in patients with heart failure: systematic review and meta-analysis. J Med Internet Res. Sep 26, 2022;24(9):e38697. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Brown HE, Atkin AJ, Panter J, Wong G, Chinapaw MJ, van Sluijs EM. Family-based interventions to increase physical activity in children: a systematic review, meta-analysis and realist synthesis. Obes Rev. Apr 2016;17(4):345-360. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • He Z, Wu H, Yu F, Fu J, Sun S, Huang T, et al. Effects of smartphone-based interventions on physical activity in children and adolescents: systematic review and meta-analysis. JMIR Mhealth Uhealth. Feb 01, 2021;9(2):e22601. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Bonvicini L, Pingani I, Venturelli F, Patrignani N, Bassi MC, Broccoli S, et al. Effectiveness of mobile health interventions targeting parents to prevent and treat childhood obesity: systematic review. Prev Med Rep. Oct 2022;29:101940. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Western MJ, Armstrong ME, Islam I, Morgan K, Jones UF, Kelson MJ. The effectiveness of digital interventions for increasing physical activity in individuals of low socioeconomic status: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. Nov 09, 2021;18(1):148. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Lau PW, Lau EY, Wong DP, Ransdell L. A systematic review of information and communication technology-based interventions for promoting physical activity behavior change in children and adolescents. J Med Internet Res. Jul 13, 2011;13(3):e48. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Rose T, Barker M, Maria Jacob C, Morrison L, Lawrence W, Strömmer S, et al. A systematic review of digital interventions for improving the diet and physical activity behaviors of adolescents. J Adolesc Health. Dec 2017;61(6):669-677. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Stephenson A, McDonough SM, Murphy MH, Nugent CD, Mair JL. Using computer, mobile and wearable technology enhanced interventions to reduce sedentary behaviour: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. Aug 11, 2017;14(1):105. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Yerrakalva D, Yerrakalva D, Hajna S, Griffin S. Effects of mobile health app interventions on sedentary time, physical activity, and fitness in older adults: systematic review and meta-analysis. J Med Internet Res. Nov 28, 2019;21(11):e14343. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Duan Y, Shang B, Liang W, Du G, Yang M, Rhodes RE. Effects of eHealth-based multiple health behavior change interventions on physical activity, healthy diet, and weight in people with noncommunicable diseases: systematic review and meta-analysis. J Med Internet Res. Feb 22, 2021;23(2):e23786. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Deng W, M J J van der Kleij R, Shen H, Wei J, Brakema EA, Guldemond N, et al. eHealth-based psychosocial interventions for adults with insomnia: systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. Mar 14, 2023;25:e39250. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Champion KE, Parmenter B, McGowan C, Spring B, Wafford QE, Gardner LA, et al. Health4Life team. Effectiveness of school-based eHealth interventions to prevent multiple lifestyle risk behaviours among adolescents: a systematic review and meta-analysis. Lancet Digit Health. Sep 2019;1(5):e206-e221. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Johnson D, Deterding S, Kuhn KA, Staneva A, Stoyanov S, Hides L. Gamification for health and wellbeing: a systematic review of the literature. Internet Interv. Nov 2016;6:89-106. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kozak AT, Buscemi J, Hawkins MA, Wang ML, Breland JY, Ross KM, et al. Technology-based interventions for weight management: current randomized controlled trial evidence and future directions. J Behav Med. Feb 2017;40(1):99-111. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Benzing V, Schmidt M. Exergaming for children and adolescents: strengths, weaknesses, opportunities and threats. J Clin Med. Nov 08, 2018;7(11):422. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ha AS, Jia J, Ng FF, Ng JY. Parent’s physical literacy enhances children’s values towards physical activity: a serial mediation model. Psychol Sport Exerc. Nov 2022;63:102297. [ FREE Full text ] [ CrossRef ]
  • Hammersley ML, Jones RA, Okely AD. Parent-focused childhood and adolescent overweight and obesity eHealth interventions: a systematic review and meta-analysis. J Med Internet Res. Jul 21, 2016;18(7):e203. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Cornish K, Fox G, Fyfe T, Koopmans E, Pousette A, Pelletier CA. Understanding physical literacy in the context of health: a rapid scoping review. BMC Public Health. Oct 19, 2020;20(1):1569. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ha AS, He Q, Lubans DR, Chan CH, Ng JY. Parent-focused online intervention to promote parents' physical literacy and support children's physical activity: results from a quasi-experimental trial. BMC Public Health. Jul 12, 2022;22(1):1330. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Swindle T, Poosala AB, Zeng N, Børsheim E, Andres A, Bellows LL. Digital intervention strategies for increasing physical activity among preschoolers: systematic review. J Med Internet Res. Jan 11, 2022;24(1):e28230. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • International early learning and child well-being study. Organisation for Economic Co-operation and Development. 2020. URL: https://www.oecd.org/education/school/early-learning-and-child-well-being-study/ [accessed 2024-01-18]
  • Kabali HK, Irigoyen MM, Nunez-Davis R, Budacki JG, Mohanty SH, Leister KP, et al. Exposure and use of mobile media devices by young children. Pediatrics. Dec 2015;136(6):1044-1050. [ CrossRef ] [ Medline ]
  • McCloskey ML, Thompson DA, Chamberlin B, Clark L, Johnson SL, Bellows LL. Mobile device use among rural, low-income families and the feasibility of an app to encourage preschoolers' physical activity: qualitative study. JMIR Pediatr Parent. Dec 06, 2018;1(2):e10858. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. Mar 29, 2021;372:n71. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. Jul 21, 2009;339(jul21 1):b2700. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Alexandrou C, Henriksson H, Henström M, Henriksson P, Delisle Nyström C, Bendtsen M, et al. Effectiveness of a smartphone app (MINISTOP 2.0) integrated in primary child health care to promote healthy diet and physical activity behaviors and prevent obesity in preschool-aged children: randomized controlled trial. Int J Behav Nutr Phys Act. Feb 21, 2023;20(1):22. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Delisle Nyström C, Sandin S, Henriksson P, Henriksson H, Maddison R, Löf M. A 12-month follow-up of a mobile-based (mHealth) obesity prevention intervention in pre-school children: the MINISTOP randomized controlled trial. BMC Public Health. May 24, 2018;18(1):658. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Nyström CD, Sandin S, Henriksson P, Henriksson H, Trolle-Lagerros Y, Larsson C, et al. Mobile-based intervention intended to stop obesity in preschool-aged children: the MINISTOP randomized controlled trial. Am J Clin Nutr. Jun 2017;105(6):1327-1335. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions. Hoboken, NJ. John Wiley & Sons; 2019.
  • Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. Aug 28, 2019;366:l4898. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. Nov 28, 2019;22(4):153-160. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. Feb 18, 2014;14:25. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ferguson T, Olds T, Curtis R, Blake H, Crozier AJ, Dankiw K, et al. Effectiveness of wearable activity trackers to increase physical activity and improve health: a systematic review of systematic reviews and meta-analyses. Lancet Digit Health. Aug 2022;4(8):e615-e626. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ho RS, Chan EK, Liu KK, Wong SH. Active video game on children and adolescents' physical activity and weight management: a network meta-analysis. Scand J Med Sci Sports. Aug 2022;32(8):1268-1286. [ CrossRef ] [ Medline ]
  • Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. Sep 13, 1997;315(7109):629-634. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ, et al. GRADE Working Group. What is "quality of evidence" and why is it important to clinicians? BMJ. May 03, 2008;336(7651):995-998. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. Apr 26, 2008;336(7650):924-926. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Garrison MM, Christakis DA. The impact of a healthy media use intervention on sleep in preschool children. Pediatrics. Sep 2012;130(3):492-499. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Sun A, Cheng J, Bui Q, Liang Y, Ng T, Chen JL. Home-based and technology-centered childhood obesity prevention for Chinese mothers with preschool-aged children. J Transcult Nurs. Nov 08, 2017;28(6):616-624. [ CrossRef ] [ Medline ]
  • Fu Y, Burns RD, Constantino N, Zhang P. Differences in step counts, motor competence, and enjoyment between an exergaming group and a non-exergaming group. Games Health J. Oct 2018;7(5):335-340. [ CrossRef ] [ Medline ]
  • Trost SG, Brookes DS. Effectiveness of a novel digital application to promote fundamental movement skills in 3- to 6-year-old children: a randomized controlled trial. J Sports Sci. Feb 27, 2021;39(4):453-459. [ CrossRef ] [ Medline ]
  • Yarımkaya E, Esentürk OK, İlhan EL, Karasu N. A WhatsApp-delivered intervention to promote physical activity in young children with autism spectrum disorder. Int J Dev Disabil. Feb 18, 2022;68(5):732-743. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Haines J, McDonald J, O'Brien A, Sherry B, Bottino CJ, Schmidt ME, et al. Healthy habits, happy homes: randomized trial to improve household routines for obesity prevention among preschool-aged children. JAMA Pediatr. Nov 01, 2013;167(11):1072-1079. [ CrossRef ] [ Medline ]
  • Barkin SL, Heerman WJ, Sommer EC, Martin NC, Buchowski MS, Schlundt D, et al. Effect of a behavioral intervention for underserved preschool-age children on change in body mass index: a randomized clinical trial. JAMA. Aug 07, 2018;320(5):450-460. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Byun W, Lau EY, Brusseau TA. Feasibility and effectiveness of a wearable technology-based physical activity intervention in preschoolers: a pilot study. Int J Environ Res Public Health. Aug 23, 2018;15(9):1821. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Downing KL, Salmon J, Hinkley T, Hnatiuk JA, Hesketh KD. Feasibility and efficacy of a parent-focused, text message-delivered intervention to reduce sedentary behavior in 2- to 4-year-old children (mini movers): pilot randomized controlled trial. JMIR Mhealth Uhealth. Feb 09, 2018;6(2):e39. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Ling J, Robbins LB, Zhang N, Kerver JM, Lyons H, Wieber N, et al. Using Facebook in a healthy lifestyle intervention: feasibility and preliminary efficacy. West J Nurs Res. Dec 09, 2018;40(12):1818-1842. [ CrossRef ] [ Medline ]
  • Yoong SL, Grady A, Stacey F, Polimeni M, Clayton O, Jones J, et al. A pilot randomized controlled trial examining the impact of a sleep intervention targeting home routines on young children's (3-6 years) physical activity. Pediatr Obes. Apr 11, 2019;14(4):e12481. [ CrossRef ] [ Medline ]
  • Andersen E, Øvreås S, Jørgensen KA, Borch-Jenssen J, Moser T. Children's physical activity level and sedentary behaviour in Norwegian early childhood education and care: effects of a staff-led cluster-randomised controlled trial. BMC Public Health. Nov 04, 2020;20(1):1651. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Hoffman JA, Schmidt EM, Arguello DJ, Eyllon MN, Castaneda-Sceppa C, Cloutier G, et al. Online preschool teacher training to promote physical activity in young children: a pilot cluster randomized controlled trial. Sch Psychol. Mar 2020;35(2):118-127. [ CrossRef ] [ Medline ]
  • Marsh S, Taylor R, Galland B, Gerritsen S, Parag V, Maddison R. Results of the 3 Pillars Study (3PS), a relationship-based programme targeting parent-child interactions, healthy lifestyle behaviours, and the home environment in parents of preschool-aged children: a pilot randomised controlled trial. PLoS One. Sep 17, 2020;15(9):e0238977. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Zeng N, Lee JE, Gao Z. Effects of home-based exergaming on preschool children’s cognition, sedentary behavior, and physical activity: a randomized crossover trial. Brain Behav Immun Integr. Jan 2023;1:100002. [ FREE Full text ] [ CrossRef ]
  • Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. Jul 22, 2011;343(jul22 1):d4002. [ CrossRef ] [ Medline ]
  • Hnatiuk JA, Brown HE, Downing KL, Hinkley T, Salmon J, Hesketh KD. Interventions to increase physical activity in children 0-5 years old: a systematic review, meta-analysis and realist synthesis. Obes Rev. Jan 2019;20(1):75-87. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Wu CC, Huang CW, Wang YC, Islam MM, Kung WM, Weng YC, et al. mHealth research for weight loss, physical activity, and sedentary behavior: bibliometric analysis. J Med Internet Res. Jun 08, 2022;24(6):e35747. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Zhang J, Yang SX, Wang L, Han LH, Wu XY. The influence of sedentary behaviour on mental health among children and adolescents: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. Jun 01, 2022;306:90-114. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Cliff DP, Hesketh KD, Vella SA, Hinkley T, Tsiros MD, Ridgers ND, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. Apr 2016;17(4):330-344. [ CrossRef ] [ Medline ]
  • Kelishadi R, Azizi-Soleiman F. Controlling childhood obesity: a systematic review on strategies and challenges. J Res Med Sci. Oct 2014;19(10):993-1008. [ FREE Full text ] [ Medline ]
  • Marsh S, Foley LS, Wilks DC, Maddison R. Family-based interventions for reducing sedentary time in youth: a systematic review of randomized controlled trials. Obes Rev. Feb 2014;15(2):117-133. [ CrossRef ] [ Medline ]
  • Neville RD, Lakes KD, Hopkins WG, Tarantino G, Draper CE, Beck R, et al. Global changes in child and adolescent physical activity during the COVID-19 pandemic: a systematic review and meta-analysis. JAMA Pediatr. Sep 01, 2022;176(9):886-894. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Teesson M, Champion KE, Newton NC, Kay-Lambkin F, Chapman C, Thornton L, et al. Health4Life Team. Study protocol of the Health4Life initiative: a cluster randomised controlled trial of an eHealth school-based program targeting multiple lifestyle risk behaviours among young Australians. BMJ Open. Jul 13, 2020;10(7):e035662. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chastin SF, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chong KH, Parrish AM, Cliff DP, Dumuid D, Okely AD. Changes in 24-hour movement behaviours during the transition from primary to secondary school among Australian children. Eur J Sport Sci. Aug 02, 2022;22(8):1276-1286. [ FREE Full text ] [ CrossRef ] [ Medline ]

Abbreviations

Edited by T de Azevedo Cardoso; submitted 19.09.23; peer-reviewed by W Liang, M Zhou, Y Zhang, EJ Buckler; comments to author 11.10.23; revised version received 04.11.23; accepted 18.01.24; published 21.02.24.

©Shan Jiang, Johan Y Y Ng, Kar Hau Chong, Bo Peng, Amy S Ha. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 21.02.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Front Public Health

Physical Therapy for Neurological Conditions in Geriatric Populations

Eli carmeli.

1 Department of Physical Therapy, University of Haifa, Haifa, Israel

With more of the world’s population surviving longer, individuals often face age-related neurology disorders and decline of function that can affect lifestyle and well-being. Despite neurophysiological changes affecting the brain function and structure, the aged brain, in some degree, can learn and relearn due to neuroplasticity. Recent advances in rehabilitation techniques have produced better functional outcomes in age-related neurological conditions. Physical therapy (PT) of the elderly individual focuses in particular on sensory–motor impairments, postural control coordination, and prevention of sarcopenia. Geriatric PT has a significant influence on quality of life, independent living, and life expectancy. However, in many developed and developing countries, the profession of PT is underfunded and understaffed. This article provides a brief overview on (a) age-related disease of central nervous system and (b) the principles, approaches, and doctrines of motor skill learning and point out the most common treatment models that PTs use for neurological patients.

Introduction

With increased age, individuals often face age-related neurological decline as well as disorders that can affect activities of daily living (ADL), general function such as gait and balance, and well-being ( 1 ). Hence, preserving brain, muscle, and neuromuscular function is critical to health and quality of life.

Neurorehabilitation research has progressed substantially over recent decades. Lauenroth et al. ( 2 ) have indicated that neuroplasticity, or the ability of the brain to restructure synaptic connections, specifically in reaction to learning or experience or following injury is a process that occurs throughout the lifespan, even among the aged ( 3 ).

The amount of research focusing on motor learning structural and/or functional brain alterations in old people is increasing ( 4 ). The knowledge of changes in brain state in neuropathological conditions becomes particularly interesting when the motor learning ability is translated into functional ability ( 5 ).

Regarding the involvement of physical therapy (PT) in neurological patients, there are several treatment methods that available for the neurorehabilitation ( 6 ). A commonly applied treatment is neurodevelopmental treatment (NDT) ( 7 ). PT for the elderly neurologically involved patient with sensory–motor impairments, postural control (i.e., balance), and coordination, and it does so through the knowledge of motor learning and motor control ( 8 ). The PT is part of an interdisciplinary team targeted to prevent functional decline, restore function, and ADL, prevent secondary complications and comorbidities, allow compensating to offset and adapt to residual disabilities, and to maintain of function over the long term. The prevention of falls, frailty, fatigue, and sarcopenia could improve the patient’s health and life span ( 9 , 10 ). PT for neurological patients also has a role in immediate or acute care, when there is a requirement to provide hospital-based short-term intensive PT aimed at the recovery of musculoskeletal and neurological function, limbs positioning, and handling due to hypertonic or spastic muscles ( 11 ).

Many factors are associated with the lack of compliance with a PT regimen in the elderly or with the availability of the service. This could be attributed due to internal and external impediments such as insufficient time, malnutrition, lack of motivation, no pleasure while exercising, fear of falling, and lack of social support, no space to exercise, limited finances, no transportation, and so forth. Such reasons can impede achieving the maximum benefits from PT ( 12 ). Cognitive impairment, such as dementia and delirium, and psychological impairment such as depression and anxiety can additionally affect the patient’s neurorehabilitation goals and outcomes ( 13 , 14 ).

The major aim of this mini review is to describe the role of PT in neurorehabilitation for elderly people and to introduce the main rehabilitation approaches and techniques of doing so.

PT in Developed and Developing Countries

In many developed and developing countries, the profession of PT is significantly underfunded, underestimated, and understaffed ( 15 ). These results in either low quality of physiotherapy and unavailable PT services, long waiting periods and in many cases patients seek therapy in (evidence-based treatment options, which frequently worsen the individual’s overall health status). Unfortunately, unsubstantiated treatments and unavailable medicine, practitioners, and health services are situations all too common in many Third World countries (mostly in Africa and some in mid-Asia) where those in poverty cannot afford to establish modern, evidence-based medical services, and where adequate training for physicians and allied health-care providers is not up to the highest standards. Moreover, in these health-and-welfare-deprived countries, national policy and regulations, roles, standard of care, absence of internship accommodations, and medical regulations are not adequately enforced, allowing unsubstantiated practices even flourish and replace universally accepted interventions ( 16 ).

The first step in overcoming the shortage of health services in general and skilled PTs in particular is to open academic PT programs that train students according the Commission on Accreditation in Physical Therapy Education ( 17 ) guidelines (e.g., 4 years program for pursuing Bachelor PT that contain approximately 3,000 academic hours and 1,000 h of supervised clinical internship). Simultaneously, policy makers must create national board exam along with official documentation to define job description, code of ethics, duties, responsibilities, and scope of practice for PT. Second step is to develop research fields relate to PT, such as gait and balance analysis lab, muscle strength/power objective evaluation tools, electron diagnostic instruments to measure certain qualities such as quantitative electroencephalography and electromyography both in academia and in clinical setting.

Aging Brain

Not infrequently seen in the aging brain are momentary (i.e., transient ischemic attack) ( 18 ), permanent impairment, functional disability, and personality changes ( 19 ), which can vary greatly in severity and progression. Aging brains may oftentimes be associated with deficiencies in various regions of the nervous system responsible for vestibular function and motor control (e.g., reduced reaction time, impaired coordinative movements), speech and language function (e.g., anomias), thinking (e.g., confusion, disorientation), sensory perception, learning, mental fatigue, attention, judgment, problem solving (e.g., agnosias, apraxias), ADL and instrumental ADL (e.g., dressing, eating, personal hygiene, shopping, house work, transportation) sleeping, mood (e.g., depression and melancholy), behavioral changes (e.g., stress, anxiety, confusion or delirium, fear, loneliness/isolation) ( 20 ), and disorganized behavior and doing unusual things (e.g., shouting, undressing in public).

Neuroplasticity

Despite physiological and structural changes affecting the brain tissue, the aged brain, to some degree, can learn and relearn due to dynamic events known as “neuroplasticity” ( 21 ). Neuroplasticity can occur by producing certain proteins such as brain-derived neurotrophic factor, by evolving new connections between synapses and forming new pathways in the central nervous system. Although neuroplasticity emerges more often right after birth and during the first years of life ( 22 ), our brain’s ability to learn new skills, to relearn old skills, and to adapt activities continues frequently also as we aged; however, the ability, quality, and rate of learning and relearning are expected to diminish and proceed at a slower pace. Neuroplasticity is likely due to two major neurophysiological processes: neurogenesis and synaptogenesis ( 23 ).

Age-Related Neurology Disorders

Neurodegenerative conditions are a general term for a range of conditions, which primarily affect neurons in the central nervous system, both at the brain and spinal cord level. Neurodegenerative diseases such as dementia, Alzheimer’s, Parkinson, and amyotrophic lateral sclerosis (Lou Gehrig’s disease) are incurable and debilitating conditions that result in progressive degeneration and or even death of nerve cells ( 24 ).

Other neurological or pathological conditions affecting the brain such as CVA (i.e., stroke), seizure, or any condition composed of the intracranial components of the cerebral cortex: white matter, thalamus, amygdala, hypothalamus, brain stem, and cerebellum, is associated with movement impairments, visual–motor learning ( 25 ) communication difficulties, loss of cognitive abilities such as memory and decision making, psychological changes demonstrates strong association between anxiety and depression and fear of falls ( 26 ), and decline in function and social participation.

PT for Neurorehabilitation and Neuro-Maintenance by Didactic Means

In general, the PT uses the International Classification of Functioning, Disability, and Health model in a problem solving approach to assess activity, function, and participation. In this way, the PT can identify and prioritize relevant needs, concerns, and expectations as a basis for establishing achievable outcomes with patients and caregivers ( 27 , 28 ). Therefore, in addition to specific neurotreatment, PT includes activities to maintain general fitness, muscle strength and length, aerobic capacity, good posture and postural control, and education of the patients and caregivers about the disease and how to reinforce PT strategies for preventing falls and inactivity, and ways in which to prevent secondary complications such as contractures, and leg ulcers and swelling. Furthermore, one can educate formal and unpaid/family caregivers about safe techniques for lifting and transfer and how to assist with bed mobility and environmental restructuring is indispensable ( 29 ). In addition, as necessary, PT prescribes appropriate wheelchairs, chairs, bed mattresses, walking aids, orthopedic shoes, and other assistive technologies and devices.

Motor Learning

Motor learning in the elderly is not simply applied, and for successful neurorehabilitation the aged individual requires the capacity to learn acquire new information and recall that information, to practice and train with many repetitions [i.e., with many combinations (when the order of the exercises does not matter) and with permutation (when the order does matter) ( 30 , 31 )]. The accomplishment of motor skills involves a process of motor control and motor learning. Motor control theories and principles provide an integrated framework from different disciplines such as psychology, neurology, biomechanics, occupational therapy, and physical education ( 32 ).

Older adults must frequently accommodate to the gradual deterioration of their sensory–motor systems, emotional and cognitive functions that occur associated with aging, adjust how they perform multitasks and how they manage their health ( 33 ). Individuals in the fourth age with associated neurological conditions may need to relearn previously acquired motor skills such as bathing, eating, dressing up, or keeping hygiene with limited and distorted quality of resources available and accessible to them.

Motor skill learning involves many principles, approaches, and doctrines ( 34 ). Formal and informal learning is a process of change and dependent on intrinsic plasticity and neuronal dynamics ( 35 ) rather than on a collection of accurate and practical knowledge, where a patient is gaining new knowledge, functions, tasks, or skills. Progresses eventually require patience and persistence and tend to follow learning curves. For an individual’s survival, motor development, maintenance of skill and learning are essential and crucial, yet they are typically learned and performed done circumstantially. Motor skills both learned and relearned are not all acquired at once, but build upon and are shaped by what already has been experienced and is known and by the need and drive to truly achieve them. As the brain learns it undergoing electrical, chemical, and structural changes (e.g., signal transducing adapter proteins, G-proteins and ion channels, intra-membrane receptors) that finally, produce a relative permanent change representing long-term procedural/implicit memory.

Biofeedback in PT

The question that arises in motor learning is what is the best way to learn sensory–motor skills? One of the most helpful techniques is the use of biofeedback ( 36 – 38 ). A biofeedback system recommend external (i.e., augmented information that is an on demanded learning technique which provided by an external source) and intrinsic feedback is response-produced training that is (a) interactive, (b) safe, and (c) allows the individual motivation to discover and relearn motor skills and thus to regain cognitive capacities. External feedback is often categorized as “knowledge of performance” (KP) also known as kinematic feedback, and “knowledge of results” (KR) augmented information ( 39 ).

Knowledge of performance refers to information provided to a patient during the activity/task/movement, and it includes information about suitability, accuracy, efficiency, quickness, and velocity. KR is augmented information provided to a patient, verbally and non-verbally after the activity/task/movement was concluded. KR focuses at the success level of the task, so eventually it provides a quantity score (%, points, etc.). Typically, KR feedback can be vocal (“well done,” “great job”) auditory (applause) or visual (such as smiley, or thumb up for good performance and thumb down for poor performance). Carmeli ( 40 ) had noted that for biofeedback to be most successful and beneficial for geriatric populations, an individual must include several functional factors such as motivation, challenge point framework, guidance, and should be proven by evidence-based practice. Feedback can improve neurorehabilitation if attention, task-related memory, and “reaction time” are practiced.

Motor learning requires many combinations and permutations. For new synapses and pathways to be formed and for functional connections to be created and developed, neurons must be aroused. Specific ways of administering feedback can activate neurogenesis. Training the brain by repeated and varied practices facilitates positive results. Lisa Muratori and Ben Sidaway described the five necessary categories for efficient motor learning practice including (1) blocked or obstructed practice is when the patient perform a single/identical skill over; (2) by contrast, the patient works on a number of different tasks in combination with each other; (3) distributed practice is when the patient receives more rest time than practice time; (4) massed practice is when the patient does more practice than rest time; and (5) contextual interference—a series of skills are practiced in a random sequence ( 41 , 42 ).

Task Analysis and Task-Specific Training

Task-specific or task-oriented practice is an approach to rehabilitation that focuses on performance of functional tasks that are meaningful to the individual ( 43 ). In many neurological conditions, specifically in Parkinson’s disease, knowledge of the biomechanics of movement can be used to make certain that the most efficient strategy is trained. It is equally important for PT to occur within the context of functional tasks such as walking (with variations in movement speed, direction, and distance), stairs climbing, standing up from a sitting position, sitting down, turning around, obstacle negotiation, to pick up products from the shelf in the supermarket and place them in a cart, to hang clothes on a clothesline, insert and remove products from the refrigerator, picking up objects off the floor or counter, reaching for a glass, grasping bottle, drinking from cups of different sizes and shapes and manipulating objects with different sizes, shapes, textures, and weights.

Functional training is effective in enhancing transfer and retention and very helpful when there is a high degree of similarity between the trained task and new variations of the task. Moreover, task-specific training also means that PT takes place not in a formal environment such as a PT clinic or laboratory but in the natural environment where the individual’s functional movements are most difficult to perform yet most important for maintaining effective ADL skills (e.g., person’s home/bedroom/kitchen, street, sidewalk/curbs). But, if such environment is not available, PT can provide environmental modifications such as creating ramps, rails, stairs, and different walking surfaces (grass field, asphalt, sand track, gravel path).

There is currently no evidence-based PT to cure neurodegeneration diseases. However, a PT can provide specific means for relieving the symptoms and incapacities of a pathological condition, provide a means of preventing musculoskeletal side effects, and help to improve patients’ quality of life. For example, psychomotor exercises such as Tai Chi can improve cognitive function in older people at risk of cognitive decline ( 44 ), and gait training for Parkinson can increase postural stability and reducing muscle rigidity ( 45 ).

The NDT/Bobath (NDT)

Neurodevelopmental treatment is a holistic clinical practice that emphasizes individualized therapeutic handling based on movement analysis for rehabilitation. NDT is based on knowledge of human movement patterns, including atypical patterns, and in-depth knowledge in analyzing postural control, righting reactions, motor learning, associated movements, and activation of key points of control ( 46 , 47 ). Movement facilitation is accomplished by handling techniques, weight-bearing exercises to guide patients through initiation and completion of intended task. Thus, patients learn how to control postures and movements and then progress to more difficult ones. However, two associates, Prof. Mindy Levin and Ms. Elia Panturin, clearly stated, “… that a major barrier to the evaluation of the therapeutic effectiveness of the Bobath concept is lack of a unified framework for both experimental identification and treatment of neurological motor deficits ” ( 48 ).

Constraint-Induced Movement Therapy (CIMT)

In this rehabilitation model, initially designed for adults post-stroke, the unaffected arm is restrained, requiring the individual to use the affected side to complete numerous repetitions of various tasks that challenge the system ( 49 , 50 ). Study outcomes that investigated the effect of CIMT have demonstrated that intense structured practice leads to improvements in function, quality of movement, reaction time, and even changes in the neurosubstrates of the brain, which correspond to improved movement capabilities.

Proprioceptive Neuromuscular Facilitation (PNF)

Proprioceptive neuromuscular facilitation is a common stretching and strengthening practice with broad applications in treating patients with neurological and musculoskeletal conditions mainly for increasing muscle elasticity and endurance, and improve active, passive range of motions, to increase joint stability, to enhance neuromuscular coordination and control in the athletic and clinical setting ( 51 , 52 ). When performed in addition to prescribed exercise, PNF may also increase muscular performance. Two PNF techniques are mostly used include the contract–relax method and the contract–relax–antagonist–contract method. For more information about PNF techniques, please see Ref. ( 53 ).

Physical neurorehabilitation can enhance brain and neuromuscular adaptation in the fourth age. PT for neurological patients is a comprehensive process that intends to teach, guide, and promote brain plasticity, thus reducing the threats for any functional and cognitive variations ( 54 , 55 ).

Although there is strong support that a structural PT program for neuropatients could actually affect brain plasticity by assisting neurogenerative, neuroadaptive, and neuroprotective processes. Neurorehabilitation may be implemented in the framework recommended by the International Classification of Function, Health and Diseases. The final goal of gerontology-based PT neurorehabilitation is to improve quality of life for those in the fourth age and, together with global health education programming, to allow individuals the most independence possible and social participation.

Author Contributions

The author confirms being the sole contributor of this work and approved it for publication.

Conflict of Interest Statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

IMAGES

  1. (PDF) Adherence to Physical Therapy: A Qualitative Study

    research paper related to physical therapy

  2. An Introduction To Physical Therapy For

    research paper related to physical therapy

  3. Lecture 5 Introduction to Physical Therapy

    research paper related to physical therapy

  4. Physical Therapy Evaluation Template

    research paper related to physical therapy

  5. (PDF) Preparing physical therapy students for the role of clinical

    research paper related to physical therapy

  6. Introduction to Physical Therapy by Michael A. Pagliarulo

    research paper related to physical therapy

VIDEO

  1. madhyamik physical science question paper 2024 answer/madhyamik 2024 ph. science question answer

  2. Therapeutic 1 lecture 11 2nd IHD 2022/4/10

  3. Madhyamik physical science question paper 2024

  4. physiological in success 💯💯

  5. ABTA 2024 Physical Science Test Paper|ABTA Page-182|Madhyamik 2024 Physical Science ABTA Test Paper

COMMENTS

  1. Physical Therapy

    February 2024 Announcement New Editor-in-Chief for PTJ APTA The American Physical Therapy Association announces the appointment of Steven Z. George, PT, PhD, FAPTA, as Editor-in-Chief beginning January 1, 2024. George will succeed current Editor-in-Chief Alan Jette, PT, PhD, FAPTA. Latest articles

  2. How New Technology Is Improving Physical Therapy

    The aim of this paper is to highlight new technology currently being used in Physical Therapy for orthopedic conditions ranging from sports medicine to joint arthroplasty to trauma. Go to: Blood Flow Restriction Rehabilitation

  3. PTJ: Physical Therapy & Rehabilitation Journal

    Journal Article PTJ: Physical Therapy & Rehabilitation Journal Alan M Jette Physical Therapy, Volume 100, Issue 12, December 2020, Pages 2077-2078, https://doi.org/10.1093/ptj/pzaa183 Published: 10 November 2020 Article history PDF Split View Cite Permissions Share Subject Professional Issues Issue Section: Editorial

  4. Using research to guide practice: The Physiotherapy Evidence Database

    The Physiotherapy Evidence Database (PEDro) is a free, preeminent, global resource to support evidence-based physical therapy. PEDro provides rapid access to randomized controlled trials, systematic reviews, and clinical practice guidelines evaluating physical therapy interventions. Methods

  5. Effectiveness of physical therapy and exercise on pain and functional

    This study aims to investigate the effect of physical therapy modalities on pain and functional status in patients with non-specific low back pain. Patients and methods

  6. Has Reporting on Physical Therapy Interventions Improved in 2 Decades

    We searched 6 journals for trials using physical therapy interventions that were published in 2000 and 2018. Two independent assessors scored the TIDieR checklist and extracted descriptive information, including Physiotherapy Evidence Database (PEDro) scale scores.

  7. Evidence in Practice: A New Series for Clinicians

    The aim of the "Evidence in Practice" series is to help practicing physical therapists build expertise in understanding research. Each article will focus on one feature of the research process and explain the basics concisely—less than 2 pages—in nontechnical language. Evidence in Practice articles will not delve into the complexity of ...

  8. Physiotherapy Theory and Practice

    The aim of Physiotherapy Theory and Practice is to provide an international, peer-reviewed forum for the publication, dissemination, and discussion of recent developments and current research in physiotherapy/physical therapy. The journal accepts original quantitative and qualitative research reports, theoretical papers, systematic literature reviews, clinical case reports, and technical ...

  9. Current Issue : Journal of Physical Therapy Education

    The Journal of Physical Therapy Education advances the scholarship of physical therapy education in all its dimensions by disseminating scholarly works of discovery, application, and integration and enriches physical therapy academic and clinical education environments by using evidence into the educational decision-making process to effectively prepare students, support faculty and clinicians ...

  10. Most Popular Articles : Journal of Neurologic Physical Therapy

    The Journal of Neurologic Physical Therapy (JNPT) is an indexed resource for dissemination of research-based evidence related to neurologic physical therapy intervention. High standards of quality are maintained through a rigorous, double-blinded, peer-review process and adherence to standards recommended by the International Committee of Medical Journal Editors.

  11. St. Catherine University SOPHIA

    May 17, 2017 Research Advisor: Jyothi Gupta, PhD, OTR/L, FAOTA ABSTRACT BACKGROUND AND PURPOSE: The American Physical Therapy Association adopted the International Classification of Functioning, Disability, and Health (ICF) in 2008.

  12. Physical Therapy in Sport

    Papers in Physical Therapy in Sport are double-blind peer reviewed. Physical Therapy in Sport is the official journal of the Association of Chartered Physiotherapists in Sports and Exercise Medicine.

  13. Exercise and health: historical perspectives and new insights

    Since ancient times, the health benefits of regular physical activity/exercise have been recognized and the classic studies of Morris and Paffenbarger provided the epidemiological evidence in support of such an association. Cardiorespiratory fitness, often measured by maximal oxygen uptake, and habitual physical activity levels are inversely related to mortality. Thus, studies exploring the ...

  14. Doctor of Physical Therapy Research Papers

    Doctor of Physical Therapy Research Papers Research Papers from 2017 PDF A Systematic Mapping Review of Health Promotion and Well-being Concepts in Physical Therapy, Andrew Amundson, Jesse Klein, Bailey Ringold, and Aaron Theis PDF

  15. Physiotherapy and pelvic floor health within a contemporary

    Most studies report the estimates of prevalence of urinary incontinence in women to be between 25% and 45% (Dumoulin, Cacciari & Hay-Smith 2018) whilst up to 80% of men may experience urinary incontinence post-prostatectomy (Hodges et al. 2019 ).

  16. University Library: Physical Therapy: Choosing a Research Topic

    Narrowing your topic: After you conduct a review on your topic, you should discover what is already known and what research questions remain regarding your topic. Your research question will most likely derive from the recent literature. What remains to be known and studied about your issue?

  17. Indian Journal of Physical Therapy and Research

    ISSN: 2666-3481 Online ISSN: 2666-349X Frequency: Semiannual eTOC Alert Current Issue Highlights Editorial Integrating Technology in Physical Therapy Practice: A New Era of Rehabilitation Welling, Aarti; Metgud, Santosh Indian Journal of Physical Therapy and Research. 5 (1):1-3, Jan-Jun 2023. Favorite PDF Permissions Invited Editorial

  18. LibGuides: *Physical Therapy Research Guide: Home

    Welcome to your Research Guide for Physical Therapy! This Research Guide is a starting place for finding information and research materials in Physical Therapy courses. The Search for Information tab highlights key resources for research in this discipline. Other tabs above offer suggestions for different stages of the research process.

  19. High impact research from PTJ

    Research Article eLearning in Physical Therapy: Lessons Learned From Transitioning a Professional Education Program to Full eLearning During the COVID-19 Pandemic Physical Therapy, Volume 101, Issue 4, April 2021, pzab082, https://doi.org/10.1093/ptj/pzab082 Article Commentary From Fear to Safety: A Roadmap to Recovery From Musculoskeletal Pain

  20. Current Concepts in Sports Injury Rehabilitation

    In modern sports injury management, a team approach involving the sports physician, physiotherapist, strength and conditioning coaches, sports psychologist, nutritionist, coach, and the athlete is critical. Most importantly the rehabilitation needs to follow a biopsychosocial approach. 10 We need an understanding of the sport and what ...

  21. Beyond conventional therapies: exploring the role of Pilates in

    Analysis of gathered data suggests that Pilates, when incorporated, may yield benefits for patients with various neurological disorders, and encourages contemplation in rehabilitation research across a broader spectrum of neurological disorders. Pilates exercise method, characterized by its holistic approach, underscores core stability, strength, and flexibility, coupled with meticulous muscle ...

  22. Future physical therapist hopes to help meet the needs of underserved

    The field of physical therapy offers opportunities for influential and compassionate care working alongside people in need of rehabilitation and learning who they are to offer the best care possible. Having the ability to form connections with those being cared for and watching their journey progress is a great inspiration to me.

  23. Current Issue : Pediatric Physical Therapy

    Pediatric Physical Therapy is the first and only peer-reviewed journal devoted to this discipline. The Journal provides a forum for scientific and professional exchange among researchers and practitioners throughout the world that represent subspecialties of the discipline, including early intervention, neonatology, pediatric sports and fitness, school physical therapy, acute care for ...

  24. Journal of Medical Internet Research

    Background: The high prevalence of unhealthy movement behaviors among young children remains a global public health issue. eHealth is considered a cost-effective approach that holds great promise for enhancing health and related behaviors. However, previous research on eHealth interventions aimed at promoting behavior change has primarily focused on adolescents and adults, leaving a limited ...

  25. Physical Therapy for Neurological Conditions in Geriatric Populations

    Recent advances in rehabilitation techniques have produced better functional outcomes in age-related neurological conditions. Physical therapy (PT) of the elderly individual focuses in particular on sensory-motor impairments, postural control coordination, and prevention of sarcopenia. Geriatric PT has a significant influence on quality of ...